化学学院张亚文课题组在纳米氧化铈体系的界面电子结构及其催化性能的调控方面取得新进展
2024/04/16
负载型催化剂由于具有稳定的界面结构、便于分离回收,被广泛用于石油化工、汽车尾气处理、新能源电池等领域。对负载型催化剂而言,金属纳米颗粒和载体之间存在不可避免的相互作用,包括两者之间的电荷转移、颗粒形貌和化学组成的改变,以及在载体迁移后形成包覆结构。这些界面相互作用共同影响了反应物的吸附和转化过程,是决定催化性能的关键因素。
在各种界面效应中,电子效应对催化性能的调节最为显著。界面电子结构与表面物种的吸附强弱密切相关,而表面物种的吸附直接影响了催化活性和选择性。研究发现,反应催化活性与物种吸附强度通常呈火山关系,只有适中的物种吸附强度才能到达最高的催化性能。然而,如何通过化学手段精准调控界面电子效应,使重要中间体吸附强度达到最适合的位置,是催化研究中的难点;同时,对于复杂反应何为重要中间体也不明确。因此,亟待开发精准的界面调控策略,进而解析复杂反应的构效关系,指导包括CO2转化、氢能再生等关键能源反应的催化材料设计。
最近,化学与分子工程学院张亚文教授课题组从CeO2基负载型催化材料出发,开发了两种精准调控界面电子结构的方法,电化学诱导界面调控策略和氨热处理界面调控策略,分别实现了增强界面电子相互作用和减弱界面电子相互作用(图1)。

图1:调控策略示意图。(a) 电化学诱导界面调控策略;(b) 氨热处理界面调控策略
电化学诱导策略如下:首先在CeO2表面负载Au(OH)3物种,在随后的电化学预处理过程中,利用Au3+物种的强氧化性,在其被还原的同时可以诱导CeO2载体的还原,进而增加两者的相互作用。得到的催化材料Au-CeO2-DP用于CO2电催化还原反应中,在-0.7至-1.0V的宽电位下均表现出95%以上的CO法拉第效率(图2)。得益于界面电子态的调控,-0.7V的Au质量电流密度比传统NaBH4还原得到的催化剂提升了5.8倍,与文献中报道的结果比较也处在领先水平。后续研究表明,增强的金属-载体相互作用使Au纳米颗粒表现出δ+的价态,同时在界面处产生了丰富的氧空位。界面电子结构的改变提升了催化材料对CO2的吸附稳定性,加速了重要羧酸中间体生成,进而提升CO2电还原反应的催化性能。

图2:Au-CeO2-DP的催化性能。(a) LSV曲线;(b) CO2电催化还原活性;(c) Au质量电流密度;(d) 催化稳定性
氨热处理策略通过对CeO2纳米结构的NH3热处理过程,在CeO2中引入N掺杂,从而对氧空位进行封闭,减弱其与表面金属物种的相互作用。通过这种合成策略得到的Co-CeO2催化剂用于水煤气变换制氢反应,发现随着NH3处理温度的升高,催化活性逐渐增强,其中800度处理的样品Co/800N-CeO2催化活性是未经处理样品的23.8倍,与文献结果比较表明,减弱的界面电子相互作用大幅提升了催化效率,使Co基催化剂用于工业生产中成为可能。活性的提高主要来自两个方面:一方面,由于金属-载体相互作用减弱,Co物种在反应条件下平均价态降低,0价Co位点的增加有利于稳定CO吸附,并加速重要中间体羧酸盐的生成;另一方面,N物种在反应条件下不稳定,N物种的离去有利于氧空位的生成,从而增强对水分子的活化能力。两者共同作用提高水煤汽变换反应的催化性能。

图3:Co-CeO2催化材料的水煤汽变换反应催化性能。(a) CO转化率随温度的变化曲线;(b) 280 ℃的反应速率
对金属-载体相互作用的两部分研究工作“Au3+ Species-Induced Interfacial Activation Enhances Metal−Support Interactions for Boosting Electrocatalytic CO2 Reduction toCO”和“Weakening the Metal−Support Interactions of M/CeO2 (M = Co, Fe, Ni) Using a NH3‑Treated CeO2 Support for an Enhanced Water−GasShift Reaction”近期在ACS Catal.发表(ACS Catal. 2022, 12, 923−934;ACS Catal.2022,12, 11942−11954)。第一作者为张亚文课题组博士生孙啸尘,张亚文为该工作的通讯作者。刘海超教授课题组也对该研究作出了实质贡献。这一系列工作为开发稳定、高活性负载型催化剂提供了新的思路。
该研究得到国家自然科学基金委重点项目、国家重点研发计划和北京分子科学国家研究中心的资助,并得到严纯华院士与孙聆东教授课题组的大力支持。
文章来源北京大学新闻网,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。
-
2025年11月优质学术会议推荐 16
-
2025年机器视觉、智能成像与模式识 392
-
2025年第七届控制与机器人国际会议 576
-
2025年智能光子学与应用技术国际学 1529
-
2025年机械工程,新能源与电气技术 1790
-
2025年计算机科学、图像分析与信号 2065
-
2025年材料化学与燃料电池技术国际 1861
-
2025年自动化前沿系统、智慧城市与 10-23
-
2025年信息光学、遥感技术与机器视 10-23
-
2025年数字人文、文化遗产与语言学 10-23
-
2025年神经科学、生物信息学与智能 10-23
-
2025年语言认知、人工智能与计算建 10-23
-
2025年社会科学、应用语言学与人文 10-23
-
2025年传统机械、动力学与智能装备 10-23
-
2025年图像处理、物理建模与结构设 10-23
-
2025年两院院士增选有效候选人1145
-
2025最新JCR分区及影响因子4758
-
好学术:科研网址导航|学术头条分2033
-
2025年国际期刊预警名单发布!1930
-
2025年中科院期刊分区表重磅发8447
-
中国科协《重要学术会议目录(205134
-
吉林大学校长张希:学术会议中的提2840
-
清华大学地学系阳坤课题组揭示全球10-20
-
历史时期极端干旱灾害的数据评估和10-20
-
“清华化学百年论坛:塑造化学的未10-20
-
研究揭示植物激素独脚金内酯作为跨10-20
-
清华大学联合研发的“46MW大容10-20
-
清华大学(软件学院)-九疆电力建10-20
-
中国农业大学土地学院马韫韬教授团10-20
-
电子科技大学光电学院本科生在一区10-20
-
张家界风景文化交流中心 1986

-
中国科学院寒区旱区环境与工程研究 20936

-
fdcv 23008

-
北京艾尚国际展览有限公司 7968

-
河北承德盛世会议服务有限公司 23016

-
郑州大学 18389

-
第二届2017机械控制与自动化国 24126

-
北京联佳业广告有限公司 2042

-
上海大学 23124

-
全国疑难及重症肝病攻关协作组 21023

-
浙江大学电气工程学院 2042

-
香港机械工程师协会 20986

-
沈阳博思教育咨询有限公司 18228

-
西北工业大学 23019

-
亚太科学与工程研究所 23150

-
杭州晟凌会务服务公司 18212

-
译佰翻译公司 18074

-
湖南诗和远方出版文化传媒公司 8105

-
郑州君健教育咨询有限公司 23200

-
食品安全分析与检测教育部重点实验 18043

















605











































