清华大学 药学院钱锋课题组提出无定形固体分散体制剂工作的新机制和设计原则
2024/04/22
当前在研的化学新药中,70-80%为难溶药物。用常规制剂技术使这些小分子获得足够的口服生物利用度,从而推向临床研究并最终上市,往往面临很大困难。无定形固体分散体技术(Amorphous Solid Dispersion, ASD)是近年来越来越常用的新型口服制剂技术。ASD通过高能量的无定形态药物获得动力学过饱和但不稳定的高药物浓度,同时利用优化的制剂处分设计,大幅延长药物的过饱和时间,从而最终大大提高口服生物利用度。
研究人员发现,药物长时间的溶液过饱和常常和溶液中的载药纳米物质相关,然而这些载药纳米物质的形成机制尚不明确。不同研究人员根据不同的实验观察和研究角度,对此提出了两种可能的机理:一是ASD在介质中快速溶出,产生的过饱和溶液经过液-液相分离 (LLPS),产生富含药物的油滴形成纳米物质,其可作为药物储库维持药物过饱和;二是ASD中亲水性高分子溶出过快,导致剩余的富含药物组分形成纳米物质。
近日,清华大学药学院钱锋教授课题组提出了无定形固体分散体制剂工作的新机制和设计原则。该研究提出了一个全新的机理,即纳米物质的形成是由于存在“防水”的药物-高分子相互作用。该研究以非洛地平为模型药物,PVP、PVP-VA及HPMC-AS为高分子制备了5%-20%载药量的ASD,并比较了它们在0.05M HCl与PBS (pH6.5)介质中的固有溶出行为,其中部分过饱和的溶出介质产生了纳米物质。同时,对非洛地平与这三种高分子的相互作用展开研究,结果表明存在“防水”的药物-高分子相互作用的ASD倾向于在溶出时产生纳米物质。

图1.“防水”的药物-高分子相互作用与ASD在0.05M HCl中产生纳米物质的示意图
ASD中的高分子通常有以下两种作用:一是结晶抑制剂,抑制存储过程中无定形药物发生结晶;二是维持溶出过程中的过饱和,促进药物的吸收。在这个过程中,药物-高分子相互作用起到重要作用。采用DSC,测得非洛地平与PVP、PVP-VA与HPMC-AS的Flory-Huggins相互作用参数分别为-0.55±0.20,-1.02±0.21及0.62±0.07。负值的Flory-Huggins相互作用参数说明两者存在吸引相互作用,而正值则说明相互作用为排斥。进一步采用NMR研究两者的相互作用,非洛地平的相对位移变化值参见图2。结果表明,非洛地平与PVP、PVP-VA产生相互作用的位点稍有不同;VA基团使PVP-VA比PVP更易与非洛地平产生氢键。
同时,采用了动态水吸附(DVS)研究了非洛地平ASD中药物与高分子在水分存在时的相互作用,结果详见图1中左图。PVP与PVP-VA ASD中,水分的存在有助于两组分的相互作用(曲线下凹),而HPMC-AS ASD中,水分的存在会破坏药物高分子的相互作用(曲线上凸)。这一实验现象与观察到的纳米物质的产生,具有一定的相关性。

图2.非洛地平在高分子存在时的13C NMR化学位移变化值
本研究工作得到如下结论,即“防水”的药物-高分子相互作用是溶出过程中纳米物质形成的原因。该研究在ASD制剂应用领域具有重要的应用:这一机制直接将纳米物质的形成与高分子的选择联系起来,提供了纳米物质产生的直接物理化学机理,还提出了一种设计ASD处方以优化药物溶出和口服生物利用度的潜在方法。
以上内容由清华大学药学院钱锋课题组和德国拜耳制药公司的研发人员联合发表于物理药剂学国际期刊《分子药剂学》(Molecular Pharmaceutics),题为“防水的药物−聚合物相互作用有助于非洛地平无定形固体分散体在溶出过程中形成纳米物质”(Water-Resistant Drug−Polymer Interaction Contributes to the Formation of Nano-Species during the Dissolution of Felodipine Amorphous Solid Dispersions)。
清华大学药学院钱锋教授为本文通讯作者,钱锋教授课题组博士后刘磊为本文的第一作者,德国拜耳公司的科研人员林克·陈(Linc Chen)、乌特·穆勒斯(Wouter Müllers)、皮特·塞尔诺(Peter Serno)为共同作者。德国拜耳公司为本项研究提供了资金支持,寻济生物科技(北京)有限公司为刘磊的博士后培训提供部分资金。
文章来源清华大学新闻,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。
- 
  2025年11月优质学术会议推荐 16
   - 
  2025年机器视觉、智能成像与模式识 392
   - 
  2025年第七届控制与机器人国际会议 576
   - 
  2025年智能光子学与应用技术国际学 1529
   - 
  2025年机械工程,新能源与电气技术 1790
   - 
  2025年计算机科学、图像分析与信号 2065
   - 
  2025年材料化学与燃料电池技术国际 1861
   - 
  2025年自动化前沿系统、智慧城市与 10-23
   - 
  2025年信息光学、遥感技术与机器视 10-23
   - 
  2025年数字人文、文化遗产与语言学 10-23
   - 
  2025年神经科学、生物信息学与智能 10-23
   - 
  2025年语言认知、人工智能与计算建 10-23
   - 
  2025年社会科学、应用语言学与人文 10-23
   - 
  2025年传统机械、动力学与智能装备 10-23
   - 
  2025年图像处理、物理建模与结构设 10-23
   
- 
  2025年两院院士增选有效候选人1145
 - 
  2025最新JCR分区及影响因子4758
 - 
  好学术:科研网址导航|学术头条分2033
 - 
  2025年国际期刊预警名单发布!1930
 - 
  2025年中科院期刊分区表重磅发8447
 - 
  中国科协《重要学术会议目录(205134
 - 
  吉林大学校长张希:学术会议中的提2840
 - 
  清华大学地学系阳坤课题组揭示全球10-20
 - 
  历史时期极端干旱灾害的数据评估和10-20
 - 
  “清华化学百年论坛:塑造化学的未10-20
 - 
  研究揭示植物激素独脚金内酯作为跨10-20
 - 
  清华大学联合研发的“46MW大容10-20
 - 
  清华大学(软件学院)-九疆电力建10-20
 - 
  中国农业大学土地学院马韫韬教授团10-20
 - 
  电子科技大学光电学院本科生在一区10-20
 
- 
  中国土木工程学会港口工程分会 18219

 - 
  英论阁学术院 8563

 - 
  中华中医药行业科技交流中心 2110

 - 
  辽宁石油化工大学 8134

 - 
  中昊科隆展览有限公司 8052

 - 
  沈阳博思教育咨询有限公司 2189

 - 
  河北撒学五四路 22959

 - 
  湖南商康医药电子商务有限公司 21155

 - 
  ICRESG 21019

 - 
  国际工学技术出版协会 2264

 - 
  武汉亚盟信息文化传播有限公司 24351

 - 
  陕西中医药医院 21159

 - 
  南通纺织职业技术学院 18064

 - 
  武汉理工大学 23970

 - 
  上海鸿与智商业媒体 2130

 - 
  第四军医大学组织工程研发中心 18365

 - 
  上海秋硕展览有限公司 8087

 - 
  中华医学会 2282

 - 
  WILL 8102

 - 
  北京艾尚国际展览有限公司 8012

 
						
					 
					















 793











































						
						