当前位置:首页 >> 学术资讯 >> 科研信息

清华大学数学中心归斌在二维共形场论研究中取得重要进展

2026/02/07

文章导读
二维共形场论的两大数学体系——共形网与顶点算子代数——长期被视为“貌合神离”。归斌的突破性工作,首次为这一领域建立起无界算子的系统理论,成功将子因子方法拓展至更贴近物理现实的数学框架。他不仅打通了两种数学语言的深层联系,更证明了在最重要的WZW模型中,二者确实描述同一物理本质。这项发表于《数学新进展》的成果,解决了该领域多年悬而未决的核心猜想,为统一理解二维共形场论铺平道路。
— 内容由好学术AI分析文章内容生成,仅供参考。

子因子(subfactor)理论是泛函分析中的一个重要方向。20世纪80年代,沃恩·琼斯(Vaughan Jones)在研究子因子的过程中发现了琼斯多项式(Jones polynomial)这一著名的扭结不变量。1989年,爱德华·威滕(Edward Witten)从物理的角度将琼斯多项式置于三维拓扑场论的大框架下,并且与二维共形场论联系起来。

在数学上,二维共形场论有两种看起来完全不同的数学实现方式——共形网(conformal net)方法和顶点算子代数(vertex operator algebra)方法。前者属于泛函分析,并且与子因子有天然的联系。后者属于表示论这一代数方向,起源于20世纪80年代理查·博赫兹(Richard Borcherds)对怪兽月光(Monstrous Moonshine)猜想的证明。证明共形网和顶点算子代数具有等价的表示范畴(representation category)是一个重要的数学问题:一方面,只有证明二者具有等价的表示范畴,才能明确它们对应了相同的三维拓扑场论;另一方面,证明表示范畴的等价性,才能让数学家更好地理解二维共形场论的两种数学实现方式为何在本质上是一样的。

清华大学数学中心归斌在二维共形场论研究中取得重要进展

论文主要成果

北京时间1月23日,清华大学丘成桐数学科学中心助理教授归斌在《数学新进展》(Inventiones Mathematicae)上在线发表文章“共形网的范畴扩张中的无界场算子”(Unbounded field operators in categorical extensions of conformal nets)。归斌是论文的唯一作者。

在这篇文章中,归斌创新地对共形网表示的融合积(fusion product of representations of conformal nets)建立了系统的无界算子理论。借助于这一理论,传统上只适用于有界算子的子因子理论被拓宽到无界算子上,从而更加适用于量子场论的数学研究。作为该理论的应用,归斌在这篇文章中证明了许多共形网和相应的顶点算子代数都有等价的表示范畴,特别是对于维斯-祖米诺-威滕(Weiss–Zumino–Witten)模型这一类最重要的二维共形场论模型,由此解决了与维斯-祖米诺-威滕(Weiss–Zumino–Witten)模型相关的一个长期悬而未决的猜想。


版权声明:
文章来源清华大学,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。

相关学术资讯
近期会议

2026年矿产资源、勘探技术与地球科学国际会议(ICRTS 2026)(2026-02-28)

2026年能源、电力与可持续发展国际学术会议(EESD 2026)(2026-03-06)

第三届光电信息与光学工程国际学术会议(OIOE 2026)(2026-03-06)

第九届大数据与应用统计国际学术研讨会(ISBDAS 2026)(2026-03-06)

第五届网络安全、人工智能与数字经济国际学术会议(CSAIDE 2026)(2026-03-06)

第五届材料工程与应用力学国际学术会议(ICMEAAE 2026)(2026-03-06)

2026年社会心理学、行为科学与教育国际会议(SPBSE 2026)(2026-03-09)

2026年智慧交通与检测技术国际会议(ITDT 2026)(2026-03-25)

2026年第六届智能机器人系统国际会议(ISoIRS 2026)(2026-03-27)

2026年第五届算法、计算和机器学习国际会议(CACML 2026)(2026-03-27)

2026年创意产业与应用经济学国际会议(ICCIAE 2026)(2026-3-25)

2026年机械、检测技术与自动化控制国际会议(MTTAC 2026)(2026-3-18)

2026年第10届人工智能与虚拟现实国际会议 (AIVR 2026)(2026-7-11)

2026年金融科技与数字经济转型国际会议(FTDET 2026)(2026-2-13)

2026数理统计、应用物理与精密仪器国际会议(ICMSAPPI 2026)(2026-3-11)

2026年地球科学、水资源与海洋国际学术会议(ESWRO 2026)(2026-2-14)

2026人工智能、高性能计算与算法国际会议(AIHPCA 2026)(2026-3-13)

2026年信息工程与计算机视觉、机器人国际会议(ICCVRIE 2026)(2026-4-28)

2026年智能电网与能源交互技术国际学术会议(ICSGEIT 2026)(2026-2-13)

2026年污染控制技术、生物学与农业国际会议(BAPCT 2026)(2026-3-29)

小贴士:学术会议云是学术会议查询检索的第三方门户网站。它是会议组织发布会议信息、众多学术爱好者参加会议、找会议的双向交流平台。它可提供国内外学术会议信息预报、分类检索、在线报名、论文征集、资料发布以及了解学术资讯,查找会服机构等服务,支持PC、微信、APP,三媒联动。