北京国际数学研究中心教授谢俊逸、袁新意合作解决几何Bogomolov猜想难题
2024/04/24
近日,北京国际数学研究中心教授谢俊逸和袁新意合作的论文“Geometric Bogomolov conjecture in arbitrary characteristics(任意特征的几何Bogomolov猜想)”获世界顶级数学期刊Inventiones mathematicae在线发表。

论文截图
丢番图几何作为数论的一个分支,历史悠久且活跃至今,其目标是研究有理系数的多项式方程的有理数解。用现代代数几何的语言描述,丢番图几何的目标就是研究代数簇的有理点,并且还可以很自然地把有理点推广到代数点。Bogomolov于1980年提出猜测,对于定义在代数数域上的一个阿贝尔簇A和它的一个闭子簇X,如果X不是A的阿贝尔子簇的平移,那么X上的代数点很“稀疏”。这里的指导思想是,阿贝尔簇上的代数点很“密集”,但是其它类型的子簇上的代数点很“稀疏”。这两个概念看似模糊,但是都可以用代数点的典范高度给出严谨的数学陈述。这个猜想即是著名的“算术Bogomolov猜想”。1998年,Ullmo和张寿武证明了算术Bogomolov猜想,他们的主要工具是两人之前与Szpiro合作证明的小高度点的等分布定理。
在丢番图几何中,由于数域与函数域的类比,很多问题可以互相翻译。进入本世纪,在Gubler前期工作的基础上,Yamaki提出了算术Bogomolov猜想在函数域上的正确类比,即几何Bogomolov猜想。仿照Ullmo和张寿武的算术Bogomolov猜想的证明,并且受袁新意对Szpiro-Ullmo-张寿武的等分布定理的推广的启发,Gubler和Yamaki证明了几何Bogomolov猜想的一类重要情形。由于函数域不能自然地嵌入到复数域,等分布定理不能发挥其最大威力,之后一段时间,此猜想只有零星进展。直到2018年,Cantat、高紫阳、Habegger、谢俊逸合作,证明了这个猜想在特征零的时候成立。不同于Ullmo、张寿武、Gubler、Yamaki的路线,这一方法利用了来自复分析和动力系统的工具,难以推广到正特征的情形。几何Bogomolov猜想是少见的函数域比数域更难的猜想。
2021年,谢俊逸和袁新意合作,最终证明了几何Bogomolov猜想的所有情形。他们的证明承袭了Ullmo、张寿武、Gubler、Yamaki这条路线,特别的,根据Yamaki的工作,该猜想被转化为阿贝尔簇处处是好约化的情形。利用超平面降维,谢俊逸和袁新意进一步将问题转化为基域的超越维数是1的情形,然后利用代数几何里的相交论,将问题转化为已被Raynaud和Hrushovski解决的Manin-Mumford猜想,从而到达终点。有意思的是,算术和几何Bogomolov猜想本来就是作为Manin-Mumford猜想的加强版提出的。用纯代数几何的语言描述,谢俊逸和袁新意的结果给出了射影代数曲线上的阿贝尔概型上的线丛在闭子簇上的bigness的一个完美的判别法。

袁新意
袁新意是著名的“北大数学黄金一代”成员,他于2020年初辞去美国加州大学伯克利分校的教职,回到北大,加盟北京国际数学研究中心。袁新意的工作领域是数论和算术几何,主要的工作方向是Arakelov几何、丢番图几何、算术动力系统、志村簇与L函数。他在这些方向都有突破性的工作,被认为是相关领域的国际领军数学家。

谢俊逸
谢俊逸于2021年辞去法国国家科学研究中心(CNRS)的终身职位,并于同年秋加入北京国际数学研究中心。谢俊逸是算术动力系统领域极为活跃的青年领军数学家,在算术动力系统领域做出了非常深刻和有影响力的原创性工作。
数学中心浓厚的学术氛围和宽松、开放的环境为青年数学家的研究工作创造了良好的条件。袁新意和谢俊逸相继加盟中心后,展开了频繁的交流合作,并在短时间内碰撞出思想的火花,共同攻克难题。近年来,随着越来越多青年俊彦的加入,数学中心在前瞻性基础研究、引领性原创研究和交叉学科研究等方面取得多项重大成果,今年1月,数学中心肖梁教授与人合作的论文“On the Beilinson-Bloch-Kato conjecture for Rankin-Selberg motives”也获Inventiones mathematicae在线发表。优秀人才的不懈探索,高频率、高质量的思想交流,正持续推动知识的疆界不断向前扩展。
文章来源北京大学新闻网,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。
-
2026年1月高含金量国际学术会议合 12-12
-
第四届金融科技与商业分析国际学术会议 686
-
2026年第十一届复合材料与材料工程 1453
-
2025年机器视觉、智能成像与模式识 2126
-
2025年智能光子学与应用技术国际学 3284
-
2026年机械工程,新能源与电气技术 3476
-
2025年计算机科学、图像分析与信号 3917
-
2025年材料化学与燃料电池技术国际 3633
-
2026年交通数字化、人工智能与韧性 12-19
-
2026年社会文化与公共管理国际会议 12-19
-
2026年人文地理与语言研究国际会议 12-19
-
2026年社会发展与经济发展国际会议 12-19
-
2026年光伏材料、光电转换与可再生 12-19
-
2026年可持续发展与数字化社会国际 12-19
-
2026年管理科学、语言与教育国际会 12-19
-
2025年两院院士增选有效候选人2672
-
2025最新JCR分区及影响因子7552
-
好学术:科研网址导航|学术头条分3540
-
2025年国际期刊预警名单发布!3510
-
2025年中科院期刊分区表重磅发13412
-
中国科协《重要学术会议目录(207866
-
吉林大学校长张希:学术会议中的提4517
-
中国科大提出电化学一体化驱动策12-19
-
中国科大实现电泵浦片上集成高亮度12-19
-
西北农林科技大学【陕西新闻联播】12-19
-
中国科大实现片上非相干泵浦高品质12-19
-
中国科大中性原子量子计算研究成果12-19
-
炔烃远端C-O键的不对称活化转化12-19
-
研究揭示叶片内生真菌分子功能多样12-19
-
科研人员提出柑橘黄龙病防控新策略12-19
-
未来之星 21245

-
武汉会务公司 23139

-
湖北武汉大学 18182

-
上海决策者经济顾问有限公司(CD 18175

-
北京 24491

-
深圳市生物医药促进会 2216

-
中国协会 18230

-
武汉扬帆四海文化传播有限公司 24490

-
InnovationEnterp 21328

-
21015

-
fdcv 23025

-
北京大学计算机系 18339

-
北京嘉诺美迪营销策划有限公司 21307

-
湖北研学文化发展有限公司 8085

-
西南医院关节外科中心 21160

-
上海新华投资发展有限公司 18252

-
北京艾尚国际展览有限公司 8068

-
山东三汇医疗科技有限公司 8080

-
番禺理工学院 18154

-
中国水利技术信息中心 24208

















650









































