北京航空航天大学化学学院在解析天然材料的新颖结构及力学性能方面取得进展
2024/04/18
![]() |
图1 银杏果壳由石细胞通过“纹孔”互锁组装而成
图2 银杏果壳独特的石细胞“互锁”结构,赋予其优异的比断裂韧性
图3 “纹孔”诱导裂纹进入石细胞内部,通过分层和撕裂吸收能量
在国家自然科学基金项目(批准号:52125302、22075009、51961130388、21875010和51903125)等资助下,北京航空航天大学化学学院程群峰教授课题组在解析天然银杏果壳新颖结构及其力学性能方面取得进展,相关成果以“银杏果壳提供了一种独特的仿生设计模型(Ginkgo seed shell provides a unique model for bioinspired design)”为题,于2022年11月28日在线发表于《美国科学院院刊》(Proceedings of the National Academy of Sciences)杂志。论文链接:https://www.pnas.org/doi/10.1073/pnas.2211458119。
天然结构材料,如木材、骨骼、鲍鱼壳等,均具有优异的力学性能,特别是对裂纹扩展的抵抗能力。这类材料的高断裂韧性主要源于微纳米多级次结构对裂纹的终止作用,即高效的外部增韧机理。而目前广泛研究的天然结构材料,其力学性能大都具有高度各向异性,导致这些材料难以抵抗全方向的裂纹扩展。
鉴于此,研究人员首次发现了银杏果壳石细胞“互锁”的独特结构,它在不同方向上都具有优异的抵抗裂纹扩展能力。银杏果壳通过大量具有厚细胞壁的多边形石细胞紧密地结合在一起(图1)。石细胞的内部次生壁中是半径约为1.2微米的细长管道,即纹孔。这些纹孔从细胞中部的空腔延伸至胞间层,与相邻石细胞的纹孔形成“纹孔对”结构,将相邻的细胞壁“互锁”在一起。这种独特的结构使得银杏果壳各个方向的起扩KIC基本一致(图2),在施加载荷的情况下,纹孔诱导石细胞中靠近胞间层的细胞壁通过分层和撕裂等方式吸收能量(图3)。
本工作发现了银杏果壳的纹孔互锁石细胞的奇特结构,从而赋予银杏果壳全方向抵抗裂纹扩展的能力,为构筑力学性能各向同性的高分子纳米复合材料提供了仿生启示。
文章来源国家自然科学基本委员会,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。
-
2025年两院院士增选有效候选人116
-
2025最新JCR分区及影响因子2461
-
好学术:科研网址导航|学术头条分641
-
2025年国际期刊预警名单发布!770
-
2025年中科院期刊分区表重磅发4295
-
中国科协《重要学术会议目录(202964
-
吉林大学校长张希:学术会议中的提1619
-
2025年国自然正式放榜!08-27
-
SCI论文中的数据引用,如何避免08-15
-
EI核心期刊和普通期刊有什么本质08-15
-
国内期刊EI与核心有什么区别?三08-15
-
怎么查找前几年的EI期刊源?科研08-15
-
如何准确验证论文是否被SCI收录08-15
-
机械类EI期刊投稿全攻略:从实验08-15
-
SCI论文DOI号查找全攻略:学08-15
-
中国医科大学 18028
-
江南大学食品学院 24125
-
中华口腔医学会 23347
-
北京全卫联合医学科学研究院 2087
-
新疆燕泰会议服务有限公司 18082
-
亚太科学与工程研究所 23078
-
海南省心理卫生协会 23178
-
点石设计公司 2069
-
中国机械工程学会理化检验分会 2359
-
黑龙江大学水利电力学院 2310
-
北京京西酒店 2249
-
世界华商杂志社 17977
-
山东省烟台大学 21023
-
上海同济大学 18316
-
南京航空航天大学 20992
-
武汉京燕诚文化传播有限公司 2080
-
APISE 22941
-
盐城工学院东校区 21208
-
SIP组委会 21283
-
2016年建筑材料与土木工程国际 22973