当前位置:首页 >> 学术资讯 >> 科研信息

中国海洋大学在电解(海)水制氢材料研究领域取得新进展

2025/08/02

文章导读
你是否想过,海水可以直接高效制氢而无需淡化预处理?中国海洋大学黄明华教授团队重磅突破:首创“缺陷驱动逐步活化”,让催化剂在反应中自我优化,OER活性大幅提升;更提出“磁矩描述符”新理念,精准设计CoN₄-B单原子催化剂,实现从–3°C到6°C宽温域海水电解,抗氯腐蚀、稳定产氢超3小时。这项发表于《德国应用化学》《先进材料》的研究,为低成本、工业化绿色制氢打开全新路径。
— 内容由好学术AI分析文章内容生成,仅供参考。

 近日,中国海洋大学材料科学与工程学院黄明华教授团队在电解(海)水制氢材料开发领域取得新进展。团队基于缺陷驱动的逐步活化策略,以精确调控吸附微环境中金属活性中心3d轨道和和氧2p轨道的杂化,从而实现了OER催化活性中心与反应中间体之间电荷转移效率的显著提高, 相关研究成果“Defect-Driven Stepwise Activation of Metal–Organic Frameworks toward Industrial-Level Anion Exchange Membrane Water Electrolysis ”(缺陷驱动MOF逐步活化用于商业级阴离子交换膜碱性电解槽)发表于国际顶尖期刊《德国应用化学》(Angewandte Chemie International Edition)。团队基于金属原子磁矩作为关联描述符,建立与氯离子(Cl⁻)吸附能及反应相关中间体结合能的相互作用关系,实现了高效宽温海水电解,相关研究成果“Magnetic Moment Descriptor-Guided Multifunctional Co Single-atom Catalysts Enable Wide-Temperature Uninterrupted Seawater Splitting”(磁矩描述符引导多功能Co单原子催化剂实现宽温域海水电解)发表于国际顶尖期刊《先进材料》(Advanced Materials)。

开发电解(海)水制氢等清洁高效的能源转换技术,是构建绿色氢能经济的重要途径。电解过程中涉及的析氧反应(OER)与氧还原反应(ORR)作为核心电极反应,均伴随着复杂的多质子-多电子转移过程,其缓慢的动力学特性成为限制整体效率的关键瓶颈。因此,开发高效稳定的低成本电催化材料迫在眉睫。当前广泛应用的贵金属基催化剂(如Pt/C与RuO)虽然具有优异的本征催化活性,但其资源稀缺性、高昂成本及较差的稳定性,已成为制约电解(海)水制氢技术发展的主要障碍。

中国海洋大学在电解(海)水制氢材料研究领域取得新进展

图1 D-CoFc-MOF催化剂的局域配位环境以及电子结构研究

针对上述挑战,黄明华教授课题组通过调控桥联配体1,1-二茂铁二甲酸(Fc)与二茂铁二甲酸(Fc’)的配比,与钴离子配位制备了缺陷型Co基金属有机框架材料(D-CoFc-MOF)。该催化剂在OER过程中表现出从初始金属有机框架结构出发,经过中间态α-FeOOH,最终转变为高活性CoFeOOH相的动态演变过程。理论计算及原位光谱分析表明,缺陷的引入有效调节了催化材料的局域配位环境和电子结构,显著增强了Co活性中心与关键中间体OOH*的吸附能力,降低了决速步骤的反应能垒。基于该催化剂构建的阴离子交换膜电解槽(AEMWE)在60°C和1 A/cm²电流密度条件下稳定运行超过300小时,展现出优异的催化活性与长期稳定性。

同时,针对复杂电解海水应用环境中氯离子(Cl⁻)的腐蚀问题,课题组引入磁矩描述符指导催化剂筛选与设计,利用第二配位壳层阴离子工程调控过渡金属单原子CoN₄结构(CoN₄-X,X = B/O/F/P/S/Cl)。密度泛函理论计算表明,通过X阴离子的配位可以精确调节CoN₄中心的自旋态,建立了磁矩与Cl⁻吸附能及相关催化反应中间体吸附能之间的火山型关系。位于火山曲线顶点的CoN₄-B构型催化剂显著降低了Cl⁻吸附能,展现出优异的电解海水催化活性及稳定性。值得注意的是,该催化剂还实现了从-30°C至60°C宽温区间内的持续高效产氢,最大氢气产率达到853 μmol/h。

中国海洋大学在电解(海)水制氢材料研究领域取得新进展

图2 磁矩描述符引导CoN₄-B构型催化剂设计以及与反应中间体结合能关系探究

上述研究深化了对金属有机框架材料构效关系的认识,拓展了过渡金属原子级催化剂的设计理念,为电解(海)水制氢技术的持续发展提供了重要支撑。该系列研究工作获得了国家自然科学基金、国际(地区)合作与交流项目和山东省自然科学基金等支持,并与中科院青岛生物能源与过程研究所、中科院长春应用化学研究所等单位合作完成,中国海洋大学为第一通讯作者单位。


版权声明:
文章来源中国海洋大学,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。

相关学术资讯
近期会议

2025生物学、环境工程与清洁能源国际会议(ICBEECE 2025)(2025-09-05)

第七届 IEEE 能源、电力与电网国际学术会议(IEEE-ICEPG 2025)(2025-09-12)

2025环境、气候变化与生物科学国际会议(ECCBS 2025)(2025-09-13)

2025年第七届先进计算机科学,信息技术与通信国际会议(CSITC2025)(2025-09-19)

第十届机械制造技术与材料工程国际学术会议(MMTME 2025)(2025-09-19)

第九届交通工程与运输系统国际学术会议(ICTETS 2025)(2025-09-26)

第六届智能计算与人机交互国际研讨会(ICHCI 2025)(2025-09-26)

第五届机电一体化技术与航空航天工程国际学术会议(ICMTAE 2025)(2025-09-26)

2025年先进制造技术、机械工程与自动化国际会议(ICAMTMEA 2025)(2025-10-01)

2025-2026年科技计划项目申报和科技创新平台建设运行科研资金全过程管理使用高级研修班(苏州)(2025-10-22)

2025年第九届通信与信息系统国际会议 (ICCIS 2025)(2025-10-31)

2025年人文地理、文化交流与社会学国际学术会议(HGCES 2025)(2025-9-26)

2025年教育技术与虚拟现实融合发展国际会议(ICIDETVR 2025)(2025-10-19)

2025年语言文学,哲学与社会科学国际会议(ICLLPS 2025)(2025-9-20)

2025年人工智能与智慧教育创新国际会议(ICAISEI 2025)(2025-10-20)

2025年生物信息学,医疗设备与医药国际会议(ICBMDP 2025)(2025-9-30)

2025年电网系统、储能与控制科学国际会议(GSESCS 2025)(2025-11-19)

2025年全球气候治理与碳中和技术国际会议(ICGCGCNT 2025)(2025-9-23)

2025年机器学习、计算机视觉与智能系统国际会议​​ (MLCVIS 2025)(2025-9-23)

2025年量子科技与物理创新国际会议(ICQTPI 2025)(2025-9-20)

小贴士:学术会议云是学术会议查询检索的第三方门户网站。它是会议组织发布会议信息、众多学术爱好者参加会议、找会议的双向交流平台。它可提供国内外学术会议信息预报、分类检索、在线报名、论文征集、资料发布以及了解学术资讯,查找会服机构等服务,支持PC、微信、APP,三媒联动。