北京大学材料科学与工程学院莫凡洋课题组开展AI for Science交叉研究取得新进展
2024/04/07
手性分离是合成化学、材料科学和生物制药等领域中的一个重要问题。手性分离技术可以将一种化学物质中的多种手性异构体分离出来,从而获得高纯度的手性异构体,在制药、生物化学、农业化学等领域具有广泛应用。目前主流的手性分离方法之一是高效液相色谱(HPLC)。在色谱对映体分离中,实验条件的选择,包括HPLC柱类型、流速和展开剂比例,目前仍然是由经验和试错得出的。这个过程繁琐且耗时,不仅使得实验效率低下,还会导致资源的浪费。
图1 人工试错与人工智能预测手性分子色谱分离条件的对比
北京大学材料科学与工程学院莫凡洋副教授课题组采用机器学习技术来预测手性分子在高效液相色谱中的保留时间,并提出分离概率这一指标以辅助预测色谱手性分离条件。为了解决数据采集的问题,研究者从644篇不对称催化文献中自动提取实验结果,建立了手性分子保留时间数据集(CMRT数据集)。同时,研究者提出一种分位数几何增强图神经网络(QGeoGNN),用于学习分子结构与保留时间的关系。为了拓展模型的实用性,色谱的领域知识被融入到机器学习模型中,实现了多柱预测。在此基础上,研究者进一步提出了分离概率指标,以衡量手性分子在给定条件下的分离概率,从而快速准确地预测最优的手性分离实验条件。
图2 色谱对映体分离预测模型实施路径
研究表明,该研究框架在保留时间预测和色谱分离条件预测方面表现良好,为机器学习技术在化学实验场景中的应用带来了新的视角。同时,它还提高了实验的效率,更有利于加快科学发现的速度。
相关研究成果发表于Nature Communications(Doi: 10.1038/s41467-023-38853-3),莫凡洋和张东晓教授(北京大学工学院,宁波东方理工大学)为本论文的共同通讯作者。北京大学博士生徐浩是本论文的第一作者,北京大学博士生林京龙是本文的第二作者。该项研究工作得到了国家自然科学基金的资助。
文章来源北京大学新闻网,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。
-
2025年两院院士增选有效候选人116
-
2025最新JCR分区及影响因子2461
-
好学术:科研网址导航|学术头条分641
-
2025年国际期刊预警名单发布!770
-
2025年中科院期刊分区表重磅发4295
-
中国科协《重要学术会议目录(202964
-
吉林大学校长张希:学术会议中的提1619
-
2025年国自然正式放榜!08-27
-
SCI论文中的数据引用,如何避免08-15
-
EI核心期刊和普通期刊有什么本质08-15
-
国内期刊EI与核心有什么区别?三08-15
-
怎么查找前几年的EI期刊源?科研08-15
-
如何准确验证论文是否被SCI收录08-15
-
机械类EI期刊投稿全攻略:从实验08-15
-
SCI论文DOI号查找全攻略:学08-15
-
香港机械工程师协会 22954
-
个人 8118
-
澳門科技大學 2199
-
上海微纵文化传播有限公司 8076
-
中国北京市朝阳区 18119
-
河南纳智博研会议服务有限公司 8033
-
北京中经蓝山文化交流有限公司 18041
-
香港科学与工程研究中心 23024
-
上海交通大学安泰经济与管理学院《 23969
-
张家界光明国际旅行社会议奖励旅游 18595
-
北京信业达国际展览有限公司 2333
-
中国农学会 21189
-
hksme 22988
-
南宁左江会展商务服务有限公司 17947
-
北京理工大学 24113
-
百奥泰国际会议(大连)有限公司 2041
-
AUIT 23008
-
上海宝瀚会展服务有限公司 18081
-
山东恒翠会议服务有限公司 8143
-
枣庄学院 23093