电子系姚权铭课题组以小样本学习技术助力药物研发
2024/04/26
药物研发的流程通常漫长且成本高昂,人工智能技术通过对药物数据的快速分析建模,成为了加速药物研发过程的重要技术手段。然而,现有的深度学习模型决策过程不透明,可解释性不足,无法可靠地应用在药物研发中。此外,模型还依赖于大量的有标签数据,但在药物研发的过程中,数据获取通常伴随着高昂的成本和漫长的时间等待,这导致药物标签数据极为稀缺。常见模型在这种场景下存在预测准确性低、数据需求量大、可解释能力弱的局限。为了应对这一问题,清华大学电子工程系姚权铭助理教授课题组以小样本学习技术作为突破口,研究提升模型样本利用效率的算法,使深度学习模型能快速泛化到只有少量有标签样本的药物研发相关任务上。

图1.(a)人工智能助力药物研发的重要挑战:可解释性不足和样本数量稀缺(b)现有的药物研发相关任务研究方法存在的局限
药物研发相关的典型任务——药物互作用(Drug-Drug Interaction,DDI)预测是临床研究的重要部分。目前大约有6.7%的住院患者面临药物副反应的困扰,大约有0.32%的住院患者面临药物副反应带来的生命危险。挖掘潜在的药物间相互作用对于加速药物研发过程和加强人民健康保障都有重要意义。该任务可以建模为药物-药物互作用网络上的链路预测问题。然而,由稀缺的药物标签数据构建的药物-药物互作用网络非常稀疏,传统数据驱动方法在这种场景下表现不佳。

图2.(a)小样本学习技术启发的基于流的图神经网络(EmerGNN)的框架(b)基于流的图神经网络(EmerGNN)在预测准确性、数据需求量、可解释能力方面与基线方法的比较
针对药物标签数据稀缺的问题,课题组采用了小样本学习的方法,在医药领域首次提出了有效的深度学习方法——“药物相互作用的知识子图学习方法(Knowledge Subgraph Learning for Drug-drug Interaction Prediction,KnowDDI)”和“基于流的图神经网络与生物医学网络的新兴药物相互作用预测(Emerging Drug Interaction Prediction by Flow-based Graph Neural Network,EmerGNN)”,这两种方法分别高效地实现了现有药物潜在互作用的发掘和新药物间反应的预测。
课题组在原始药物间反应图谱的基础上引入了生物医药网络(Biomedical Network),利用其中丰富的医药学信息,构建了新的医药图谱,有效解决了监督数据不足的问题。医药图谱信息丰富,但同时也伴随着众多的噪声,准确预测药物互作用需要排除噪声干扰,挖掘有效信息。因此,课题组从医药图谱中提取目标药物之间的关系路径作为子图,并为路径设置注意力权重,基于注意力机制建立基于流的图神经网络EmerGNN,以此完成关键知识的提取与知识传递,建立了药物互作用预测的完整框架(图2.a)。在公共数据集上的大量实验表明,提出的EmerGNN在预测准确性和可解释能力上显著优于基线方法,数据需求量显著降低(图2.b)。这些成果为药物研发中的药物互作用预测提供了有效的算法和工具,增强了算法的可解释性,展现了人工智能在医药领域的重要辅助作用。这些研究成果有望应用于候选药物筛选和临床试验,对于加速药物研发和促进人类健康具有重大意义。
相关研究成果以“药物相互作用的知识子图学习方法”(Accurate and Interpretable Drug-Drug Interaction Prediction Enabled by Knowledge Subgraph Learning)为题,近期发表于《自然·通讯(医药)》(Nature Communication Medicine)。百度研究员王雅晴博士为论文第一作者,姚权铭为论文通讯作者。以“基于流的图神经网络与生物医学网络的新兴药物相互作用预测”(Emerging Drug Interaction Prediction by Flow-based Graph Neural Network)为题,近期发表于《自然·计算科学》(Nature Computational Science),第四范式(北京)技术有限公司研究员张永祺博士为论文第一作者,姚权铭为论文通讯作者。研究得到国家自然科学基金项目的支持。
文章来源清华大学新闻,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。
-
2026年1月高含金量国际学术会议合 12-12
-
第四届金融科技与商业分析国际学术会议 686
-
2026年第十一届复合材料与材料工程 1453
-
2025年机器视觉、智能成像与模式识 2126
-
2025年智能光子学与应用技术国际学 3284
-
2026年机械工程,新能源与电气技术 3476
-
2025年计算机科学、图像分析与信号 3917
-
2025年材料化学与燃料电池技术国际 3633
-
2026年交通数字化、人工智能与韧性 12-19
-
2026年社会文化与公共管理国际会议 12-19
-
2026年人文地理与语言研究国际会议 12-19
-
2026年社会发展与经济发展国际会议 12-19
-
2026年光伏材料、光电转换与可再生 12-19
-
2026年可持续发展与数字化社会国际 12-19
-
2026年管理科学、语言与教育国际会 12-19
-
2025年两院院士增选有效候选人2672
-
2025最新JCR分区及影响因子7552
-
好学术:科研网址导航|学术头条分3540
-
2025年国际期刊预警名单发布!3510
-
2025年中科院期刊分区表重磅发13412
-
中国科协《重要学术会议目录(207866
-
吉林大学校长张希:学术会议中的提4517
-
中国科大提出电化学一体化驱动策12-19
-
中国科大实现电泵浦片上集成高亮度12-19
-
西北农林科技大学【陕西新闻联播】12-19
-
中国科大实现片上非相干泵浦高品质12-19
-
中国科大中性原子量子计算研究成果12-19
-
炔烃远端C-O键的不对称活化转化12-19
-
研究揭示叶片内生真菌分子功能多样12-19
-
科研人员提出柑橘黄龙病防控新策略12-19
-
we 24147

-
北京市建设科技发展中心 18366

-
中国科学院武汉物理与数学研究所 18112

-
哈尔滨正元会议服务有限责任公司 23307

-
中国移动通讯公司 18095

-
Create-Net 21107

-
英国皇家化学会 21392

-
全国医药技术市场学会 2446

-
中国环境科学学会 21179

-
中国中医科学院广安门医院肿瘤科 21094

-
华衡创世(北京)信息咨询有限公司 23185

-
武汉奔诚文化传播有限公司 8669

-
云南水富云天化股份公司 18061

-
河南理工大学 21280

-
西南财经大学 23198

-
武汉智能计算及通信与控制学会 8230

-
天津职业技术师范大学 24098

-
山西锦兴能源有限公司 18211

-
中国民族卫生协会医院医师分会 23459

-
百奥泰国际会议(大连)有限公司 23216

















1009









































