当前位置:首页 >> 学术资讯 >> 科研信息

清华大学车辆学院团队在强化学习领域取得重要进展

2025/05/19

近日,清华大学车辆与运载学院李克强院士、李升波教授团队在强化学习算法设计领域取得重要进展。团队针对工业对象的智能决策与控制需求,推出了DSAC(Distributional Soft Actor Critic)系列强化学习算法,解决了已有方法值函数学习不准、策略性能低下的难题,并于典型基准测试任务中取得了国际领先的SOTA性能。第一代DSAC算法发表于《IEEE神经网络与学习系统汇刊》(IEEE Transactions on Neural Networks and Learning Systems(2022),第二代发表于《IEEE模式分析与机器智能汇刊》(IEEE Transactions on Pattern Analysis and Machine Intelligence(2025)。

强化学习在具身智能控制(如自动驾驶、机器人等)任务中展现出巨大潜力,但主流方法长期面临“值函数过估计”难题。简而言之,贝尔曼方程的迭代求解过程中,因为最大化算子的存在,易造成值函数(即性能衡量指标)误差向单一方向持续累积,导致策略学习严重偏离最优解。该问题最早在1993年由斯坦福大学的学者从算法实验中发现,进入深度强化学习阶段之后,因神经网络拟合速度慢以及固有训练误差的存在,导致过估计问题更加严峻。自2010年开始,Deepmind、麦吉尔大学的科学家先后提出了Double Q-learning、Clipped Double-Q等一系列措施,尝试使用双函数互相矫正的思想解决单一函数的计算误差。这些措施虽然在一定程度上抑制了值函数的过估计问题,但是对于高维非线性任务,仍面临值函数学习不准、策略性能低下的瓶颈难题。

清华大学车辆学院团队在强化学习领域取得重要进展

图1.DSAC算法核心架构和关键技术

自2019年开始,车辆学院研究团队聚焦“如何提高强化学习算法性能”这一问题开展攻关。首次发现了值分布函数(distributional value function)的估计偏差调节机制,证明了过估计偏差与值分布方差呈反比的结论。团队将这一机制与最大熵框架结合,把策略优化目标的刻画从单一维度扩展为无穷维度,以此为基础提出了第一代DSAC算法,极大提升了复杂工业控制任务的学习性能。为进一步改进该算法的迭代稳定性,并降低参数敏感度,团队提出了三项全新的值分布梯度修正技术,即Expected Value Substituting(EVS)、Twin Value Distribution Learning(TVDL)和Variance-Based Critic Gradient Adjustment(VCGA),并将其嵌入到第二代DSAC算法中(又称为DSAC-T)。EVS的原理是在训练值分布网络时以期望目标值替代单次随机样本,显著降低梯度方差,提高学习稳定性。TVDL的原理是并行训练两个独立值分布网络,借鉴Double Q-learning的思路,在更新时选取更保守的一方,进一步抑制过估计误差。VCGA的原理是根据值分布方差自适应缩放值分布函数更新梯度,使算法在不同任务和参数设定下都能保持稳定且一致的性能。标准测试环境的实验表明,DSAC算法的综合表现全面超越SAC(UC Berkeley)、TD3(McGill)、DDPG(DeepMind)、TRPO(UC Berkeley)、PPO(OpenAI)等主流强化学习算法。

清华大学车辆学院团队在强化学习领域取得重要进展

图2.典型任务的性能对比

目前,研究团队已将DSAC两代算法进行了开源,并集成于自主研发的GOPS工具链,以方便学术界与工业界验证与使用。该算法已应用于端到端自动驾驶、具身智能机器人、工程机械无人作业等领域的模型训练,与滴滴、广汽、东风、一汽、宝武等龙头企业开展产业应用服务。该项目得到国家“十四五”重点研发计划、国家自然科学基金、北京市自然科学基金及清华大学自主科研计划的资助。


版权声明:
文章来源清华大学新闻网,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。

相关学术资讯
近期会议

2025生物学、环境工程与清洁能源国际会议(ICBEECE 2025)(2025-09-05)

第七届 IEEE 能源、电力与电网国际学术会议(IEEE-ICEPG 2025)(2025-09-12)

2025环境、气候变化与生物科学国际会议(ECCBS 2025)(2025-09-13)

2025年第七届先进计算机科学,信息技术与通信国际会议(CSITC2025)(2025-09-19)

第十届机械制造技术与材料工程国际学术会议(MMTME 2025)(2025-09-19)

第九届交通工程与运输系统国际学术会议(ICTETS 2025)(2025-09-26)

第六届智能计算与人机交互国际研讨会(ICHCI 2025)(2025-09-26)

第五届机电一体化技术与航空航天工程国际学术会议(ICMTAE 2025)(2025-09-26)

2025年先进制造技术、机械工程与自动化国际会议(ICAMTMEA 2025)(2025-10-01)

2025-2026年科技计划项目申报和科技创新平台建设运行科研资金全过程管理使用高级研修班(苏州)(2025-10-22)

2025年电气、电子与可穿戴技术国际会议(ICEEWT 2025)(2025-10-19)

2025年人文学科与社会心理学国际学术会议(ICHSP 2025)(2025-10-17)

2025年资源勘探与地质国际会议(CREG 2025)(2025-9-29)

2025社会保障、科学教育与数字化转型国际会议(ICSSEDT 2025)(2025-9-25)

2025微生态、仿生学与生物工程国际会议(MBB 2025)(2025-9-27)

2025口腔医学、护理学与医学影像学国际会议(OMNMI 2025)(2025-10-25)

2025社会网络分析、计算机科学与媒体学国际会议(SNACSMS 2025)(2025-10-21)

2025年语言应用,翻译与文化交流国际会议(ICLATCE 2025)(2025-9-25)

2025环境、智慧能源与先进材料国际会议(ICESEAM 2025)(2025-10-17)

2025年计算机科学、通信与传感技术国际会议(CSCST 2025)(2025-11-19)

小贴士:学术会议云是学术会议查询检索的第三方门户网站。它是会议组织发布会议信息、众多学术爱好者参加会议、找会议的双向交流平台。它可提供国内外学术会议信息预报、分类检索、在线报名、论文征集、资料发布以及了解学术资讯,查找会服机构等服务,支持PC、微信、APP,三媒联动。