褰撳墠浣嶇疆锛棣栭〉 >> 学术资讯 >> 科研信息

上海交大王波、陈险峰团队PRL发文:超晶胞光子晶体近场涡旋动力学与二次谐波增强

2025/07/08

近日,上海交通大学物理与天文学院王波和陈险峰课题组与合作者首次提出了一种超晶胞光子晶体结构,观测到独特的近场涡旋动力学行为并以此实现了高效的二次谐波增强。相关研究成果以“Nearfield Vortex Dynamics of Supercell Bloch Modes” 为题发表在Physical Review Letters。

背景介绍

光子晶体平板(PCS)支持许多高品质(Q)因子的Bloch模式,例如连续域中的束缚态(BICs)或准BICs。这些模式可以极大地增强光与物质相互作用,在亚波长厚度内增强许多光学效应,在激光、单光子产生和高次谐波产生中有许多应用。近年来,基于群论和参数微扰的方法为设计和调控Bloch模式(实空间、动量空间和能带)提供了多种方案,包括BICs合并、布里渊区折叠、扭曲或莫尔PCS和工程旋转操作等。然而,上述方案大多数在简单的晶格单元的PCS中实现,且受到较为严格的对称性限制。

上海交大王波、陈险峰团队PRL发文:超晶胞光子晶体近场涡旋动力学与二次谐波增强

图1.阻挫光子Bloch模式的概念

超晶胞构建和能带结构

在本项工作中,我们设计一种C3超晶胞PCS并且观测到了独特的近场涡旋动力学。超晶胞PCS由三个排列在六角晶格中的三角形单元组成,底部单元具有一对相反的旋转角,用于调控面内旋转对称性和谷模耦合。随着成对旋转角度δB引入,布里渊区变为原来的1/3,K点的模式(倏逝谷模)被折叠至Γ点,最终形成两对双简并模式(图2)。通过改变δB可以灵活地调控谷模耦合进而调控点双简并模式;此外由于整体C3对称性的存在,双简并会一直保持。

上海交大王波、陈险峰团队PRL发文:超晶胞光子晶体近场涡旋动力学与二次谐波增强

图2.超晶胞设计与对应的能带结构

近场涡旋模式的演化

进一步地,我们系统研究了二维参数空间(δTδB)中双简并本征模式的演化。超晶胞的C3对称性允许上述双简并态通过线性组合构建二重简并的赝自旋态,由此可以得到携带近场涡旋的Bloch模式。我们发现,在二维参数空间的高对称线上,近场Bloch模式的相位涡旋会随着δB发生对称移动,并在临界角度(~40°)发生融合,形成“两上一下”或”两下一上”的赝自旋纹理,类似于磁性体系中的几何阻挫,我们称之为光子阻挫模式(Frustrated modes)(图3)。光子阻挫模式本质上是镜像对称性匹配和临界谷模耦合的结果,对应参数空间中最低的辐射损耗。通过连续的改变δB,可以实现从倏逝的谷模到准BICs、阻挫模式和准谷模的转变,每个阶段表现出不同的近场涡旋分布、非线性重叠因子β和品质因子Q,揭示了定制光与物质相互作用的不同阶段。值得注意的是,阻挫模式的非对称涡旋配置带来了优化的Qβ因子以显著地增强二次谐波(SH)。

上海交大王波、陈险峰团队PRL发文:超晶胞光子晶体近场涡旋动力学与二次谐波增强

图3.Bloch模式在参数空间的演化

二次谐波增强的实验表征

实验上,我们制备了一系列具有不同几何参数的PCS样品,系统地表征了谐振波长和Q因子并进一步地测试了1064nm激光泵浦下的SH生成。总之,随着δB从0°增加到20°,我们观测到了大约两个数量级的SH增强,这表明较低Q的阻挫模式显著优于高Q的qBICs模式对SH增强的效果(图4),与理论预测一致。

上海交大王波、陈险峰团队PRL发文:超晶胞光子晶体近场涡旋动力学与二次谐波增强

图4.超晶胞PCS二次谐波增强的实验表征

总结与展望

我们的旋转设计策略可以广泛应用,包括创建更大的超胞结构或从平面内旋转扩展到平面外倾斜等,为设计具有定制特性的超晶胞光子晶体提供了一个通用的框架,并在非线性光学、光力和激光效应中具有广阔的应用前景。此外,本研究为研究具有复杂空间对称性约束和模式耦合的超晶胞光子晶体提供了新的见解,突破了传统的简单对称性破缺和微扰的理论框架。

上海交通大学物理与天文学院博士后叶晓娜和2023级博士生王光丰为论文共同第一作者,上海交通大学王波副教授、陈险峰教授以及北京理工大学段潇洋教授为论文共同通讯作者。论文合作者还包括上海交通大学袁璐琦与李听昕老师,王子维、李增亚、贾童童等同学。研究得到了国家重点研发项目、国家自然科学基金、上海市科委国际合作项目、阳阳发展基金等支持。


鐗堟潈澹版槑锛
鏂囩珷鏉ユ簮上海交大锛屽垎浜彧涓哄鏈氦娴侊紝濡傛秹鍙婁镜鏉冮棶棰樿鑱旂郴鎴戜滑锛屾垜浠皢鍙婃椂淇敼鎴栧垹闄ゃ

鐩稿叧瀛︽湳璧勮
杩戞湡浼氳

2025年清洁能源、电力系统与可持续发展国际会议(CEPSSD 2025)(2025-10-28)

2025年电力系统与电器工程国际会议(ICPSEE 2025)(2025-10-29)

2025年第四届计算与人工智能国际会议(ISCAI 2025)(2025-11-14)

2025年设计、数字媒体与多媒体技术国际会议(DDMMT 2025)(2025-11-20)

2025年IEEE电路与系统前沿技术国际会议(FTCS 2025)(2025-11-21)

第一届光电材料与电子信息工程国际学术会议 (OMEIE 2025)(2025-11-21)

2025年船舶、海洋工程与应用技术国际会议(ICSOEAT 2025)(2025-11-24)

第二届自动化、电气控制系统与设备国际学术会议(AECSE 2025)(2025-11-28)

第五届肿瘤治疗与转化医学国际研讨会(CTTM 2025)(2025-11-28)

2025年机械电子与自动化国际研讨会(ISMA 2025)(2025-11-28)

2025年智能城市、智慧交通与可持续发展国际会议(ICSCSTSD 2025)(2025-12-12)

2025年应用经济学与金融学国际会议(ICAEF 2025)(2025-12-22)

2025文化、设计与数字媒体技术国际学术会议(CDDMT 2025)(2025-11-20)

2025年自动化工程与检测技术国际会议(ICAETT 2025)(2025-12-20)

2025年船舶制造、动力机械与机电系统国际学术会议(ETTSG 2025)(2025-11-27)

2025年力学、结构工程与建筑工程国际会议(MSEBE 2025)(2025-12-16)

2025深度学习、计算机视觉与大数据国际会议(DLCVBD 2025)(2025-12-14)

2025遗传学、神经科学与医学影像国际会议(ICGNMI 2025)(2025-12-5)

2025年统计学、先进算法与社会学国际会议(ICSAAS 2025)(2025-12-14)

2025年神经网络、自然语言处理与智能交互国际会议(NNNLPII 2025)(2025-11-24)

灏忚创澹锛氬鏈細璁簯鏄鏈細璁煡璇㈡绱㈢殑绗笁鏂归棬鎴风綉绔欍傚畠鏄細璁粍缁囧彂甯冧細璁俊鎭佷紬澶氬鏈埍濂借呭弬鍔犱細璁佹壘浼氳鐨勫弻鍚戜氦娴佸钩鍙般傚畠鍙彁渚涘浗鍐呭瀛︽湳浼氳淇℃伅棰勬姤銆佸垎绫绘绱€佸湪绾挎姤鍚嶃佽鏂囧緛闆嗐佽祫鏂欏彂甯冧互鍙婁簡瑙e鏈祫璁紝鏌ユ壘浼氭湇鏈烘瀯绛夋湇鍔★紝鏀寔PC銆佸井淇°丄PP锛屼笁濯掕仈鍔ㄣ
缁煎悎鎺ㄨ崘鍖

瀛︽湳绉戠爺缃戝潃瀵艰埅锛430+绔欙紝瀹氬埗瀛︽湳涔︾

2025骞碔EEE绗叓灞婃満鍣ㄥ涔犲拰鑷劧璇█澶.

2025骞碔EEE绗叓灞婃暟鎹瀛︿笌淇℃伅鎶鏈浗.

2025骞寸鍥涘眾閫氫俊锛屼俊鎭郴缁熶笌鏁版嵁绉戝鍥介檯.

2025骞存暟鎹瀛︿笌鏅鸿兘绯荤粺鍥介檯浼氳(DSI.

绗洓灞婃暟鐞嗙粺璁′笌缁忔祹鍒嗘瀽鍥介檯瀛︽湳浼氳 (MS.

绗笁灞婁俊鎭寲鏁欒偛涓庝汉宸ユ櫤鑳藉浗闄呭鏈細璁紙IC.

绗簲灞婃娴嬫妧鏈笌鏅鸿兘绯荤粺鍥介檯瀛︽湳浼氳锛圖TI.

2025 骞寸浜屽眾浜氭床鏅鸿兘鐢电綉锛岀豢鑹茶兘婧愪笌搴.

2025骞碔EEE绗洓灞婂厛杩涚殑鐢靛瓙銆佺數姘斿拰缁.

绗簲灞婄幆澧冩薄鏌撲笌娌荤悊鍥介檯瀛︽湳浼氳 (ICEP.

2025骞寸鍥涘眾鍏堣繘鐨勭數鍔涚郴缁熷拰鑳芥簮宸ョ▼鍥介檯.

2025骞寸浜屽眾IEEE浜氭床鍏堣繘鐢垫皵涓庣數鍔涘伐.

绗竷灞婃按鍒╀笌鍦熸湪寤虹瓚宸ョ▼鍥介檯瀛︽湳浼氳锛圚CC.

绗簲灞婄數瀛愰氫俊涓庤绠楁満绉戝鎶鏈浗闄呭鏈細璁紙.

2025骞碔EEE绗簩灞婁簹澶绠楁妧鏈侀氫俊涓.

2025骞碔EEE绗叓灞婄畻娉曪紝璁$畻涓庝汉宸ユ櫤鑳.

绗簩灞婇仴鎰熸妧鏈笌鍥惧儚澶勭悊鍥介檯瀛︽湳浼氳锛圧ST.

2026宓屽叆寮忕郴缁熴佺Щ鍔ㄩ氫俊涓庤绠楀浗闄呬細璁紙.

绗簲灞婄數瀛愪俊鎭伐绋嬩笌鏁版嵁澶勭悊鍥介檯瀛︽湳浼氳锛圗.

绗竷灞婃柊鏉愭枡涓庢竻娲佽兘婧愬浗闄呭鏈細璁紙ICAM.

2026骞寸浜斿眾浜氭床绠楁硶銆佽绠椾笌鏈哄櫒瀛︿範鍥介檯.

2026骞碔EEE绗叚灞婂厛杩涚數姘旓紝鐢靛瓙涓庤绠.

2026骞碔EEE绗竷灞婅绠楋紝缃戠粶涓庣墿鑱旂綉鍥.