计算机系研究团队在大规模语言预训练模型前沿领域取得新进展
2024/04/12
2018年以来,预训练语言模型(PLM)及其“预训练-微调”方法已成为自然语言处理(NLP)任务的主流范式,该范式先利用大规模无标注数据通过自监督学习预训练语言大模型,得到基础模型,再利用下游任务的有标注数据进行有监督学习微调模型参数,实现下游任务的适配(图1)。越来越多实验表明:规模越大的模型不仅在已知任务上有着更好的表现,同时展现出完成更复杂的未知任务的强大泛化能力,近年出现的GPT-3、ChatGPT等均为大规模预训练模型的代表。然而,现有对大规模预训练模型的全部参数进行微调实现任务适配的做法,会消耗大量的GPU计算资源和存储资源,严重限制大模型的应用场景。为了应对该挑战,参数高效微调(Parameter-efficient Fine-tuning)方法逐渐受到关注。与全参数微调相比,参数高效微调方法冻结预训练模型99%以上的参数,仅利用少量下游任务数据微调少于1%模型规模的参数,作为模型插件实现大模型对下游任务的适配,达到媲美全参数微调的性能,并显著降低微调过程的计算和存储开销。

图1.基础模型的“预训练-微调”范式与传统深度学习的对比
研究团队提出,参数高效微调方法的本质是在对“增量参数”(Delta Parameters)进行调整,因此将此类方法命名为“增量微调”(Delta Tuning),并基于统一的分析框架对增量微调现有方法进行梳理总结,将现有方法分为三类(如图2所示):添加式(Addition-based)、指定式(Specification-based)和重参数化(Reparameterization-based)方法。为了指导后续的模型架构和算法设计,团队还进一步从参数优化和最优控制两个角度,提出了增量微调的理论框架,为探索和解释增量微调的内在机理提供了可行方案。

图2.统一视角的增量微调框架
该研究工作选择了超过100个自然语言处理任务,对主流增量微调方法进行了全面细致的性能比较和分析,得出多项重要结论,例如:(1)基础模型随着参数规模的不断增大,在性能显著提高的同时,不同增量微调方法的差异急剧减少(图3),最少仅需要优化万分之八的模型参数即可完成适配;(2)不同增量微调方法可以进行并行或者串行的组合从而达到更优的性能,表明了分布在模型参数空间中的智能能力可以进行组合和泛化;(3)增量微调方法具备良好的任务级别的迁移能力,完成特定任务的“能力”可以表示为轻量级参数化的形式,可以在不同基础模型和不同用户之间共享。以上研究表明,增量微调是基础模型的重要特性,上述结论将加深对基础模型的认识,为其创新研究与应用提供重要支撑。

图3.随着基础模型参数规模的增大,增量微调方法可以更有效地激发模型性能
研究团队自2018年以来坚持开展语言大模型创新研究,并坚持建设OpenBMB开源社区,致力于构建大规模预训练模型全流程高效计算工具体系,相关工作在全球最大的开源社区GitHub上累计获得超过4000星标关注,曾获自然语言处理领域著名国际会议ACL 2022最佳系统演示论文奖等荣誉。研究团队基于该论文成果研制发布了开源工具包OpenDelta,是OpenBMB开源社区的重要组成部分,可支持研究者和开发者灵活高效地在各类预训练模型上实现和应用增量微调方法。研究团队认为,增量微调技术将是基础模型适配特定任务、场景和用户的重要范式,可更有效地激发以ChatGPT为代表的大规模预训练模型的性能。
相关研究成果“面向大规模预训练语言模型的参数高效微调”(Parameter-efficient Fine-tuning of Large-scale Pre-trained Language Models)于3月23日被国际知名期刊《自然·机器智能》(Nature Machine Intelligence)作为封面文章发表。
该研究成果由清华大学计算机系孙茂松、李涓子、唐杰、刘洋、陈键飞、刘知远和深圳国际研究生院郑海涛等团队师生共同完成,清华大学计算机系副教授刘知远、深圳国际研究生院副教授郑海涛、计算机系教授孙茂松为该文章的共同通讯作者,清华大学计算机系2018级博士生丁宁与2019级博士生秦禹嘉为该文章的共同第一作者。该研究得到科技部科技创新2030“新一代人工智能”重大项目、国家自然科学基金、北京智源人工智能研究院、清华大学国强研究院的支持。
文章来源清华大学新闻,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。
-
2026年1月高含金量国际学术会议合 12-12
-
第四届金融科技与商业分析国际学术会议 686
-
2026年第十一届复合材料与材料工程 1453
-
2025年机器视觉、智能成像与模式识 2126
-
2025年智能光子学与应用技术国际学 3284
-
2026年机械工程,新能源与电气技术 3476
-
2025年计算机科学、图像分析与信号 3917
-
2025年材料化学与燃料电池技术国际 3633
-
2026年交通数字化、人工智能与韧性 12-19
-
2026年社会文化与公共管理国际会议 12-19
-
2026年人文地理与语言研究国际会议 12-19
-
2026年社会发展与经济发展国际会议 12-19
-
2026年光伏材料、光电转换与可再生 12-19
-
2026年可持续发展与数字化社会国际 12-19
-
2026年管理科学、语言与教育国际会 12-19
-
2025年两院院士增选有效候选人2672
-
2025最新JCR分区及影响因子7552
-
好学术:科研网址导航|学术头条分3540
-
2025年国际期刊预警名单发布!3510
-
2025年中科院期刊分区表重磅发13412
-
中国科协《重要学术会议目录(207866
-
吉林大学校长张希:学术会议中的提4517
-
中国科大提出电化学一体化驱动策12-19
-
中国科大实现电泵浦片上集成高亮度12-19
-
西北农林科技大学【陕西新闻联播】12-19
-
中国科大实现片上非相干泵浦高品质12-19
-
中国科大中性原子量子计算研究成果12-19
-
炔烃远端C-O键的不对称活化转化12-19
-
研究揭示叶片内生真菌分子功能多样12-19
-
科研人员提出柑橘黄龙病防控新策略12-19
-
武汉cite主办方 2143

-
中国食文化研究会民族食文化委员会 21086

-
ASTIRC 2057

-
河南科技学院 18607

-
上海文化公司 21115

-
上海交通大学教学发展中心 8095

-
北京路川国际展览有限公司 2117

-
合肥市中医院 21172

-
生物谷 23086

-
上海宝瀚会展服务有限公司 18206

-
北京仪多多信息技术有限公司 8122

-
上海率捷广告传媒发展有限公司 23161

-
中国建筑科学研究院建材所 2128

-
ICDES 21144

-
中国管理科学学会人力资源管理专业 18287

-
VFESVDS 21170

-
亚太科学与工程研究所 23227

-
重庆交通大学管理学院 21209

-
管理与信息工程国际会议组委会 2027

-
迈海材料基因组国际研究院 23434

















612









































