生命学院魏迪明课题组开发基于几何构型匹配的核酸粘性末端识别机制
2024/04/23
凭借着序列互补这一独特的性质,核酸分子在众多生物大分子当中脱颖而出,成为合成生物学中的研究热点之一。以DNA为例,DNA分子中的四种组成A、T、C、G之间有着严格的匹配规则——Watson-Crick碱基互补配对(A与T配对,C与G配对)。这种碱基之间的匹配规则进而造成了碱基序列与碱基序列之间的特异性识别,即序列互补。对于任意一条DNA单链而言,其互补链的序列是明确且唯一的;错误匹配的序列会降低两条链之间的结合速率,并使得最终形成的双螺旋结构的稳定性大大降低。基于DNA序列间的特异性识别,科研人员已经大大拓展了对DNA的研究,不再单一地将其作为遗传信息的载体,更是将其用作分子探针和分子机器人,使DNA分子在诸如药物递送、生物计算、疾病诊断、超分辨成像等众多领域显现出极其可观的应用前景。与此同时,在DNA纳米结构设计的不断探索中,人们对结构的复杂性、灵活性及功能化等方面的认识愈渐深入,相关设计理念和设计经验得以不断积累和丰富。
在DNA纳米结构领域中,研究人员一般通过设计粘性末端(sticky ends)来实现结构之间的识别。这些人工设计的粘性末端有着特定的长度和序列,只有序列互补的两个粘性末端之间才会形成完美的识别,从而引导DNA纳米结构的静态或动态组装。理论上长度为N(碱基数)的粘性末端可以形成4N种序列。但是在实际设计中,粘性末端的长度和序列通常会受到一定的限制,使得最终的特异性序列的种类大大指数性降低。例如对四种碱基来说,长度为2碱基的粘性末端只能形成42=16种互补对,长度为1碱基的粘性末端只能形成41=4种互补对。如何在实际设计中优化和提升粘性末端之间的识别能力已经成为DNA分子研究的一大重点。
在该研究中,清华大学生命学院魏迪明课题组从中国传统木工艺的榫卯结构中获得灵感,设计了全新的DNA粘性末端之间的识别方式——依赖几何构型的特异性识别。与依赖序列互补配对的识别方式不同,这种识别方式完全不依赖于序列的多样性,而是基于DNA双螺旋结构的多种几何构型之间的形状契合而实现的。作者展示了即便在最极端的设计情景——粘性末端长度仅为1碱基且碱基种类只有C-G配对的情况下,依然可以实现将仅有的1种互补对提升为至少10种互补对,显著地提高了DNA粘性末端之间的识别能力。

图1.基于几何构型的DNA分子特异性识别。(A)依赖几何构型的特异性识别方式与依赖序列互补的特异性识别方式之间的对比。(B)在依赖几何构型的特异性识别方式中,只有当两个粘性末端之间满足特定的几何构型要求时才会发生结合;当两个粘性末端之间没有满足特定的几何构型要求时,不会发生结合。
作者以简单的四臂分支型DNA纳米结构为模板,对其分支处的粘性末端进行设计优化,通过插入特定数量的碱基对使粘性末端的成键界面呈现出多种不同的几何构型。只有当两个末端相连使整体的几何构型满足B型DNA的螺旋参数时,才会发生结合,否则这两个末端不能发生稳定结合。利用四臂分支型DNA纳米结构的二维自组装结果来验证和分析依赖几何构型的特异性识别方式的可行性。随后利用这种识别方式成功地实现了与设计预期严格相符的多种多样的二维及三维组装。

图2.在四臂分支型DNA纳米结构中应用依赖几何构型的DNA粘性末端。(A)四臂分支型DNA纳米结构的设计细节及二维自组装活性。(B)依赖几何构型的DNA粘性末端的设计细节。(C)粘性末端的成键界面呈现出多种不同的几何构型,展现出不同的组装活性。只有当两个末端相连使整体的几何构型满足B型DNA的螺旋参数时,才会发生二维组装。
本研究拓展了DNA粘性末端的识别方式,建立了新的成键机制和调控方法,提升了DNA分子之间的识别能力,对今后高灵敏度、高精度DNA分子探针及分子机器的设计和应用具有重要的意义。
该研究成果由清华大学生命学院魏迪明分子设计课题组(MADlab)完成,论文题目为“基于分子之间的几何构型识别方式设计特异的DNA粘性末端”(Design of orthogonal DNA sticky end cohesion based on configuration-specific molecular recognition),于9月30日发表于《美国化学学会志》(Journal of the American Chemical Society)。清华大学生命科学学院2017级博士生张天晴为本文的第一作者及共同通讯作者,从项目构思、具体实施到最后论文撰写其全程基本独立完成,另一共同通讯作者为清华大学生命科学学院副教授魏迪明,其在项目立意和写作方面提供了协助。该研究得到科技部、清华-北大生命科学联合中心等基金资助。
文章来源清华大学新闻,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。
-
2026年1月高含金量国际学术会议合 12-12
-
第四届金融科技与商业分析国际学术会议 686
-
2026年第十一届复合材料与材料工程 1453
-
2025年机器视觉、智能成像与模式识 2126
-
2025年智能光子学与应用技术国际学 3284
-
2026年机械工程,新能源与电气技术 3476
-
2025年计算机科学、图像分析与信号 3917
-
2025年材料化学与燃料电池技术国际 3633
-
2026年交通数字化、人工智能与韧性 12-19
-
2026年社会文化与公共管理国际会议 12-19
-
2026年人文地理与语言研究国际会议 12-19
-
2026年社会发展与经济发展国际会议 12-19
-
2026年光伏材料、光电转换与可再生 12-19
-
2026年可持续发展与数字化社会国际 12-19
-
2026年管理科学、语言与教育国际会 12-19
-
2025年两院院士增选有效候选人2672
-
2025最新JCR分区及影响因子7552
-
好学术:科研网址导航|学术头条分3540
-
2025年国际期刊预警名单发布!3510
-
2025年中科院期刊分区表重磅发13412
-
中国科协《重要学术会议目录(207866
-
吉林大学校长张希:学术会议中的提4517
-
中国科大提出电化学一体化驱动策12-19
-
中国科大实现电泵浦片上集成高亮度12-19
-
西北农林科技大学【陕西新闻联播】12-19
-
中国科大实现片上非相干泵浦高品质12-19
-
中国科大中性原子量子计算研究成果12-19
-
炔烃远端C-O键的不对称活化转化12-19
-
研究揭示叶片内生真菌分子功能多样12-19
-
科研人员提出柑橘黄龙病防控新策略12-19
-
中国发展战略学研究会企业战略专业 18169

-
天津大学 18164

-
IAASE 21405

-
北京大学 2165

-
CDS 2296

-
上海市新材料协会 21568

-
北京邮电大学 18488

-
北京艾尚国际展览有限公司 8128

-
美国伊利诺伊理工学院 24135

-
南昌大学基础医学院生化与分子生物 21234

-
苏州大学商学院 21173

-
武汉中会会议服务有限公司 23145

-
北京米嘉科技服务有限公司 8148

-
北京艾尚国际展览有限公司 24226

-
黑龙江八一农垦大学 8168

-
中国水利技术信息中心 2065

-
大连四叶草会展有限公司 8063

-
fdcv 24117

-
峨眉山大酒店 23219

-
brachy+brachy 23072

















678









































