当前位置:首页 >> 学术资讯 >> 科研信息

北京大学深研院潘锋与合作者发表分级氢键网络调控硝酸盐还原合成氨反应研究进展

2025/12/09

文章导读
硝酸盐污染与化肥高能耗正困扰着环境与能源领域,但你可能不知道:电极表面隐藏的氢键网络竟是破解难题的关键!北大潘锋团队最新研究发现,高浓度电解液中会自发形成独特的双层结构——下层离子平面削弱反应能垒,上层硝酸根竟化身"氢键桥梁",将质子传递效率提升数倍。通过晶面调控与原子级修饰,氨产率实现突破性增长。这项发表于JACS的研究不仅揭示微观界面的协同增效机制,更为清洁能源转化技术开辟全新路径。
— 内容由好学术AI分析文章内容生成,仅供参考。

电催化技术是实现可持续能源转化与碳减排的关键路径。工业废水中高浓度硝酸盐污染与化肥生产过程中的高能耗问题,是环境与能源领域面临的双重挑战。电化学硝酸盐还原反应(NO₃RR)能在常温常压下将硝酸盐转化为高附加值氨产物,为解决上述问题提供了前景广阔的方案。然而,该反应涉及复杂的多电子转移过程,且易受析氢副反应干扰,制约了其实际应用效率。因此,深入揭示界面反应机理对设计高效NO₃RR催化剂具有重要意义。

北京大学深圳研究生院新材料学院潘锋教授团队长期致力于溶液与界面溶剂化结构研究,系统考察了界面组分、动态变化及环境电场等因素,先后提出了有序水加速析氢反应(Nature 2021,600,81—85)、界面阳离子尺寸效应调控CO₂还原选择性(J. Am. Chem. Soc. 2024,146,5532—5542)及界面H溢流效应加速硝酸根还原动力学(J. Am. Chem. Soc. 2024,146,26965—26974)等创新机理。

在上述研究基础上,潘锋团队与厦门大学李剑锋教授团队合作,以单晶金电极作为模型体系,结合原位光谱技术与理论模拟方法,首次揭示了界面水分子网络与离子层结构在电催化过程中的协同增效机制。相关研究成果以“Elevating nitrate reduction through the mastery of hierarchical hydrogen-bond networks”为题,发表于J. Am. Chem. Soc.(2025,147,20504),为高效电催化剂设计提供了新视角。

北京大学深研院潘锋与合作者发表分级氢键网络调控硝酸盐还原合成氨反应研究进展

溶液从稀到浓的结构变化

研究团队结合原位壳层隔绝纳米粒子增强拉曼光谱(SHINERS)与理论模拟,系统研究了不同浓度LiNO₃电解质中Au单晶电极表面的界面结构。研究发现,在高浓度电解质中,界面处形成了独特的有序双层结构:下层为平行的Li⁺·NO₃⁻平面,其中Li⁺的配位作用可削弱N–O键,降低反应活化能;上层为垂直取向的NO₃⁻离子。关键的发现是,垂直的NO₃⁻并非传统认为的仅作为反应物,它更扮演了“氢键网络桥联体”的双重角色,即既作为氢键受体与水分子结合,又显著增强了界面水氢键网络的连通性。这直接导致了表征网络连通性的H₂Oₙ=₂信号增强,并加速了质子传递过程,从而整体提升了硝酸盐还原反应的动力学。

为深入解析界面微观结构,研究团队结合分子动力学模拟与从头算分子动力学方法,构建了电极/电解液界面的原子模型。在最佳浓度与工作电位下,界面区域呈现出独特的双层有序结构:下层为有序的3Li⁺·NO₃⁻平面,其中Li⁺的配位作用削弱了N–O键,降低反应活化能;上层为垂直取向的NO₃⁻,通过与水分子形成氢键显著提升了H₂Oₙ=₂比例。该机制在稀释或过高浓度电解液中均无法有效形成:前者因离子数目不足,后者因Li⁺水化链锁定水分子网络。

北京大学深研院潘锋与合作者发表分级氢键网络调控硝酸盐还原合成氨反应研究进展

Au(hkl)和Au(111)-Sn界面的NO₃RR性能。(A)−1.6V下1:11 Au(111)、Au(110)、Au(100)和Au(111)-Sn/LiNO界面的NH生成速率及H₂Oₙ=₂含量。(B)Au(111)-Sn界面NO₃RR过程示意图

研究团队据此提出两种优化电极的策略。一是调控单晶电极晶面,利用其零电荷电位差异优化界面电场。Au(111)晶面因具有最正的零电荷电位,在负压下可形成最强电场,最利于驱动Li⁺与NO₃⁻的有序排列,实验测得氨产率顺序与之相符【Au(111) > Au(110) > Au(100)】。二是在Au(111)表面修饰Sn原子形成Au(111)-Sn异质结构,该结构可进一步提高界面水氢键网络连通性(H₂Oₙ=₂比例),实现质子传递效率倍增;理论模拟表明Sn的引入调控了电子结构,降低了NO₃⁻解离能垒。

本研究通过原位光谱与理论模拟,揭示了高浓度电解液能在电极表面形成独特的双层界面结构:有序的Li⁺·NO₃⁻平面层可活化反应物,而垂直的NO₃⁻层则作为氢键受体构建高连通性水网络,协同促进质子传递。通过晶面调控与Sn修饰进一步优化界面微环境,提升了氨产率。该工作建立了“浓度-网络连通性-传质效率”的构效关系,提出了“离子平面活化/氢键网络加速传质”的双功能设计原则,为高效电催化系统设计提供了新思路。

该工作获得国家自然科学基金、深圳市科技计划、广东省教育厅项目、湘江实验室项目以及物质基因组大科学设施平台重大科技基础设施项目的支持。


版权声明:
文章来源北京大学,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。

相关学术资讯
近期会议

第二届无人系统与自动化控制国际学术会议(ICUSAC 2025)(2025-12-26)

2025年IEEE第八届算法,计算与人工智能国际会议 (ACAI 2025)(2025-12-26)

第二届遥感技术与图像处理国际学术会议(RSTIP 2025)(2025-12-26)

第二届模式识别与图像分析国际学术会议(PRIA 2025)(2025-12-26)

2025年创新设计与数字化转型国际会议(2025-12-26)

第五届通信技术与信息科技国际学术会议(ICCTIT 2025)(2025-12-26)

第五届人工智能与大数据国际学术研讨会 (AIBDF 2025)(2025-12-26)

2025物理学、量子计算与光学国际会议(ICPQCO 2025)(2025-12-27)

2026年数学、人工智能与金融学国际会议(ICMAIF 2026(2026-01-06)

2026智能电网信息工程、电缆工程与电气国际会议(CEEE 2026)(2026-01-06)

2025年信息化教育、发展与艺术鉴赏国际会议(EDAA 2025)(2025-12-26)

2025年计算机算法、微芯片与电子工程国际会议(ICCAMEE 2025)(2025-12-23)

2025年智能计算、通信技术与电子信息工程国际会议(ICTEE 2025)(2025-12-29)

2025年机械工程、计算建模与自动化技术国际会议(MECAT 2025)(2025-12-22)

2025年智能机械、自动化控制与计算机技术国际会议(MACCT 2025)(2025-12-25)

2025年仿真设计与图像处理国际会议(ICSDIP 2025)(2025-12-25)

2025年医学、流行病学与生命科学国际会议(ICMELS 2025)(2025-12-28)

2025年管理科学、矿产资源与工业技术国际会议(MSMRIT 2025)(2025-12-23)

2025年能源资源与环境科学国际学术研讨会(ISERES 2025)(2025-12-30)

2025化学化工、制药与医学工程国际会议(ICCPME 2025)(2025-12-29)

小贴士:学术会议云是学术会议查询检索的第三方门户网站。它是会议组织发布会议信息、众多学术爱好者参加会议、找会议的双向交流平台。它可提供国内外学术会议信息预报、分类检索、在线报名、论文征集、资料发布以及了解学术资讯,查找会服机构等服务,支持PC、微信、APP,三媒联动。