清华大学物理系杨乐仙课题组合作在准一维铋基卤化物的研究中取得进展
2024/03/28
体边对应是拓扑量子材料的核心特征之一。例如,在三维拓扑绝缘体中,体态是绝缘的,但是在表面上存在受时间反演对称性保护的二维无能隙表面态。高阶拓扑绝缘体(HOTI)是对这一概念的推广。在高阶拓扑绝缘体中,受对称性保护的无能隙态局域在比三维块体低两个或者更多个维度的边界处 (例如一维的拓扑棱态)。迄今为止,许多材料被预测为高阶拓扑材料(例如金属Bi),但对这些材料的实验研究仍然不充分或存在一定争议。
准一维材料铋基卤化物Bi4X4(X= Br, I)由四个铋原子和四个卤族原子形成结构单元并沿b轴延伸形成链状结构。Bi4X4链沿两个垂直链方向堆叠形成单晶。铋基卤化物由于其中存在的丰富物相而成为研究各种低维新奇拓扑物态,包括高阶拓扑绝缘体、弱拓扑绝缘体等的理想平台。其中Bi4Br4被理论预言为高阶拓扑绝缘体。然而,目前依然缺乏对其特征性的高阶拓扑电子结构(例如表面态能隙及能隙内的棱态)的直接观测。
近期,清华大学物理系杨乐仙副教授课题组和合作者利用先进的亚微米空间及自旋分辨的角分辨光电子能谱,系统地研究了Bi4Br4的电子结构(图1)。研究人员首次在(100)表面上观察到具有劈裂特征的表面态并直接观测到表面态能隙。实验还揭示了此(100)表面态的自旋动量锁定特征,这些结果与第一性原理计算高度吻合。此外,实验显示在(100)表面态的能隙内存在额外的无能隙电子态,表明了体系内一维拓扑棱态的存在。以上研究结果为Bi4Br4的高阶拓扑绝缘相提供了令人信服的证据,使得Bi4Br4成为探索一维边界态电子特性及其潜在应用的理想材料平台。

图1.a. Z2拓扑绝缘体(左)和高阶拓扑绝缘体(右)的电子结构示意图。BCB:体导带;TSS: 拓扑表面态;BVB: 体价带。b. Bi4Br4垂直链方向的扫描透射电子显微镜成像。c. 利用微区角分辨光电子能谱测量Bi4Br4电子结构的示意图。d. 第一性原理计算得到的电子结构,绿色和红色曲线分别表示(100)表面态和拓扑棱态。e. Bi4Br4(100)面的能带测量结果。f. 去卷积后的能带测量结果。g. 特定能量位置下的电子自旋极化率。
此外,杨乐仙课题组及合作者还利用角分辨光电子能谱对弱拓扑绝缘体Bi4Br2I2的电子结构进行了系统研究。Bi4Br2I2由三种不同的量子自旋霍尔绝缘体交替堆叠形成,每层均具有拓扑非平凡的边缘态。角分辨光电子能谱和第一性原理计算表明,由于层间相互作用,对应于不同层的狄拉克锥的交叉点上打开了能隙。利用这一独特电子结构,人们可以通过改变化学势来调控体系内可供导电的量子自旋霍尔通道。
相关研究成果分别以“高阶拓扑绝缘体Bi4Br4的拓扑电子结构及自旋结构”(Topological electronic structure and spin texture of quasi-one-dimensional higher-order topological insulator Bi4Br4)和“通向弱拓扑绝缘体Bi4Br2I2中可调控的量子自旋霍尔通道”(Towards layer-selective quantum spin hall channels in weak topological insulator Bi4Br2I2)为题在线发表于《自然·通讯》(Nature Communications)上。
“高阶拓扑绝缘体Bi4Br4的拓扑电子结构及自旋结构”的第一作者为物理系2021级博士生赵文轩,通讯作者为清华大学杨乐仙副教授、牛津大学陈宇林教授、北京理工大学周金健教授和北京航空航天大学杜轶教授。“通向弱拓扑绝缘体Bi4Br2I2中可调控的量子自旋霍尔通道”的共同第一作者为北京航空航天大学博士生钟景元、杨明、石志坚,通讯作者为北京航空航天大学杜轶教授、庄金呈副教授、王建峰副教授与清华大学杨乐仙副教授。研究得到国家重点研发计划、国家自然科学基金、清华大学自主科研计划以及表面物理化学实验室科技基金等科研经费的支持。
文章来源清华大学新闻,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。
- 
  2025年11月优质学术会议推荐 16
   - 
  2025年机器视觉、智能成像与模式识 392
   - 
  2025年第七届控制与机器人国际会议 576
   - 
  2025年智能光子学与应用技术国际学 1529
   - 
  2025年机械工程,新能源与电气技术 1790
   - 
  2025年计算机科学、图像分析与信号 2065
   - 
  2025年材料化学与燃料电池技术国际 1861
   - 
  2025年自动化前沿系统、智慧城市与 10-23
   - 
  2025年信息光学、遥感技术与机器视 10-23
   - 
  2025年数字人文、文化遗产与语言学 10-23
   - 
  2025年神经科学、生物信息学与智能 10-23
   - 
  2025年语言认知、人工智能与计算建 10-23
   - 
  2025年社会科学、应用语言学与人文 10-23
   - 
  2025年传统机械、动力学与智能装备 10-23
   - 
  2025年图像处理、物理建模与结构设 10-23
   
- 
  2025年两院院士增选有效候选人1145
 - 
  2025最新JCR分区及影响因子4758
 - 
  好学术:科研网址导航|学术头条分2033
 - 
  2025年国际期刊预警名单发布!1930
 - 
  2025年中科院期刊分区表重磅发8447
 - 
  中国科协《重要学术会议目录(205134
 - 
  吉林大学校长张希:学术会议中的提2840
 - 
  清华大学地学系阳坤课题组揭示全球10-20
 - 
  历史时期极端干旱灾害的数据评估和10-20
 - 
  “清华化学百年论坛:塑造化学的未10-20
 - 
  研究揭示植物激素独脚金内酯作为跨10-20
 - 
  清华大学联合研发的“46MW大容10-20
 - 
  清华大学(软件学院)-九疆电力建10-20
 - 
  中国农业大学土地学院马韫韬教授团10-20
 - 
  电子科技大学光电学院本科生在一区10-20
 
- 
  《中国财富》杂志社 18018

 - 
  云南大学滇池学院 18170

 - 
  ASciE科学与工程协会 24097

 - 
  北京龙泉季诺会展有限责任公司 18124

 - 
  上海亚化工程咨询有限公司 2038

 - 
  深圳中山泌尿外科医院 23068

 - 
  重庆邮电大学 18358

 - 
  上海信世展览服务有限公司 8087

 - 
  北京贝拓会展服务有限公司 18114

 - 
  南昌大学 21229

 - 
  上海市解剖学会 24019

 - 
  IWCST2018会务组 23091

 - 
  CD 24031

 - 
  合肥科生景肽生物科技有限公司 8118

 - 
  HKSME 20945

 - 
  花蓮東華大學 2074

 - 
  APISE 23158

 - 
  秦皇岛(挂5星级)秦皇国际大酒店 23988

 - 
  宁德市顺丰速运有限公司 18010

 - 
  材料工程与应用 2352

 
						
					 
					















 641











































						
						