当前位置:首页 >> 学术资讯 >> 科研信息

自动化系封硕与密西根大学学者合作实现基于密集强化学习的自动驾驶汽车安全性测试

2024/04/12

 随着自动驾驶技术的快速发展,交通系统正面临着前所未有的革命。过去20年里,自动驾驶技术取得了巨大进步,然而截至目前,L4级别自动驾驶汽车尚未实现商业化落地。造成这种情况的原因有很多,最重要的是自动驾驶汽车的安全性能仍未能达到大规模落地应用的要求,而自动驾驶汽车安全性测试的低效率难题成为了阻碍安全性提升的关键障碍。据测算,要可靠地测试评估高水平自动驾驶汽车的安全性能,需要完成数百亿公里的测试里程,这严重滞缓了自动驾驶汽车测试研发的迭代过程。

为解决这一问题,清华大学自动化系智能交通研究团队封硕助理教授与美国密西根大学Mcity主任刘向宏(Henry Liu)教授等科研人员合作提出了基于密集强化学习的自动驾驶汽车加速测试方法,通过密集学习生成了专注安全关键场景的智能测试环境,解决了自动驾驶所面临的“稀疏度灾难”全新挑战,实现了只需智能测试环境中的少量测试里程即可等效于自然测试环境中的海量测试里程,加速了自动驾驶汽车安全性测试评估过程103~105倍。

具体而言,自动驾驶汽车安全性测试问题的本质是超高维空间小概率事件期望估计问题,其核心挑战来自“维度灾难”和“稀疏度灾难”的复合效应。“维度灾难”是指驾驶环境的时空复杂性导致环境变量超高维,使得算法计算复杂度指数增加;而“稀疏度灾难”是指安全关键事件的稀疏性使得变量空间中的多数样本无法为学习提供有效信息,导致了传统学习方法的失效。面对上述挑战,研究提出了密集强化学习方法(Dense Deep Reinforcement Learning,D2RL),通过识别和删除非安全关键状态、连接安全关键状态,并在编辑后的马尔科夫过程中训练神经网络,解决了上述“稀疏度灾难”(图1)。利用密集强化学习方法训练交通环境中背景车辆使其学习何时执行何种对抗性策略,可以构建一个智能测试环境,减少所需测试里程多个数量级,同时确保测试结果等效性。基于增强现实测试平台,研究团队在美国密西根大学Mcity和美国交通中心的测试场中使用上述方法对L4级自动驾驶汽车进行了安全性测试(图2)。结果表明上述方法可以有效学习生成智能测试环境,与直接在自然驾驶环境中测试自动驾驶汽车相比,智能测试环境可以加快评估过程多个数量级(约103~105)。

图1.密集学习方法通过删除非关键状态、连接关键状态来编辑马尔可夫过程,然后通过编辑后的马尔可夫过程训练神经网络

图2.增强现实测试平台可以通过虚拟背景车辆增强现实世界,为自动驾驶汽车提供更安全、更可控、更高效的测试环境

近日,相关研究成果以“基于密集强化学习的自动驾驶汽车安全性测试Dense Reinforcement Learning for Safety Validation of Autonomous Vehicles)为题发表在《自然》(Nature)正刊上,被选为该期封面论文,并获得《自然·新闻与观点Nature News and Views)、《自然·播客Nature Podcast)、《自然·视频》Nature Videos)等的同步报道。

图3.《自然》(Nature封面

该论文第一作者为清华大学自动化系封硕助理教授,通讯作者为美国密西根大学Mcity主任刘向宏(Henry Liu)教授。其他主要合作者包括美国密西根大学孙昊葳(Haowei Sun)、严鑫涛(Xintao Yan)、朱昊杰(Haojie Zhu)、邹征夏(Zhengxia Zou)和沈晟印(Shengyin Shen)。


版权声明:
文章来源清华大学新闻,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。

相关学术资讯
近期会议

第二届无人系统与自动化控制国际学术会议(ICUSAC 2025)(2025-12-26)

2025年IEEE第八届算法,计算与人工智能国际会议 (ACAI 2025)(2025-12-26)

第二届遥感技术与图像处理国际学术会议(RSTIP 2025)(2025-12-26)

第二届模式识别与图像分析国际学术会议(PRIA 2025)(2025-12-26)

2025年创新设计与数字化转型国际会议(2025-12-26)

第五届通信技术与信息科技国际学术会议(ICCTIT 2025)(2025-12-26)

第五届人工智能与大数据国际学术研讨会 (AIBDF 2025)(2025-12-26)

2025物理学、量子计算与光学国际会议(ICPQCO 2025)(2025-12-27)

2026年数学、人工智能与金融学国际会议(ICMAIF 2026(2026-01-06)

2026智能电网信息工程、电缆工程与电气国际会议(CEEE 2026)(2026-01-06)

2025艺术、媒体传播与表演国际会议(ICAMCP 2025)(2025-12-30)

2025年文学、艺术与现代化教育国际会议(ICLAME 2025)(2025-12-26)

2025年政治、宗教学与哲学国际学术会议 (ICPRP 2025)(2025-12-23)

2025年企业经济、金融学与统计学国际会议(ICEEFS 2025)(2025-12-28)

2025年区块链,数据分析与信息工程国际会议(BDAIE 2025)(2025-12-23)

2025年食品安全、健康与营养国际会议(ICFSHN 2025)(2025-12-26)

2025年储能化学与燃料电池技术国际会议(ESCFT 2025(2025-12-22)

2025年智能算法、遥感测绘与控制工程国际学术会议(IARSSCE 2025)(2025-12-24)

2025年艺术,设计与文化交流国际会议(ICADCE 2025)(2025-12-23)

2025深度学习、语言处理与计算机视觉国际会议(DLLPCV 2025)(2025-12-28)

小贴士:学术会议云是学术会议查询检索的第三方门户网站。它是会议组织发布会议信息、众多学术爱好者参加会议、找会议的双向交流平台。它可提供国内外学术会议信息预报、分类检索、在线报名、论文征集、资料发布以及了解学术资讯,查找会服机构等服务,支持PC、微信、APP,三媒联动。