褰撳墠浣嶇疆锛棣栭〉 >> 学术资讯 >> 科研信息

清华大学 药学院王戈林和唐叶峰团队研发具有神经保护作用的NAD生物合成酶小分子激动剂

2024/05/08

近日,清华大学药学院王戈林和唐叶峰团队针对人口与健康领域的重大需求,瞄准NAD代谢调控和神经退行等衰老相关疾病这一新的科学前沿热点,通过高通量药物筛选和基于靶点结构的理性药物设计,获得了靶向NAD生物合成限速酶烟酰胺磷酸核糖基转移酶(NAMPT)的新型小分子激活剂(NATs),为开发治疗神经退行性疾病的创新药物奠定了基础。

随着全球人口老龄化程度加深,诸如阿尔兹海默氏症(AD)、帕金森氏症(PD)等渐进性神经退行性疾病,以及其他疾病和治疗引起的急性神经退行性疾病(如脑卒中、化疗和糖尿病诱导的外周神经病变等)的发病率呈不断上升趋势,成为主要的衰老相关疾病类型之一。目前的药物能减轻一些症状,但有效药物和治疗方法匮乏。任何一种药物如果能安全有效地阻止神经细胞的退行和死亡,将具有巨大的治疗意义和应用前景。

烟酰胺腺嘌呤双核苷酸(NAD)是在动植物体内广泛分布的重要代谢物,主要有两大功能:一是作为氧化还原载体参与体内能量代谢和其他代谢过程;二是作为一系列NAD消耗酶的底物,通过这些酶调控多种信号转导过程。机体必须通过NAD代谢这个非常动态的过程维持足够并恒定的NAD水平,以发挥正常功能。近年来,越来越多的证据显示NAD代谢处于神经退行的调控中心,其稳态的维持对神经健康至关重要。在神经退行性疾病动物模型中,提高NAD水平可以改善神经细胞健康、记忆和认知功能。目前,最常见的提高NAD水平的方法是补充NAD前体,如NR、NMN、NAM或NA,国际上有多个相关临床试验正在进行中,并且NMN和NR作为抗衰老保健品或食品已在市场上热销。与此不同的是,在本项研究中王戈林和唐叶峰研究团队另辟蹊径,从发展NAD合成关键酶的激活剂入手,通过增强体内NAD生物合成,达到对抗神经退行的目的。

该研究靶向NAD生物合成挽救途径的关键限速酶NAMPT。相对于酶抑制剂而言,酶激活剂的发现极具挑战性,因而已知的酶激活剂屈指可数。在本项研究中,王戈林课题组首先通过高通量筛选发现了NAMPT小分子激活剂NAT,并深入研究了NAT作用机制和细胞保护功能(图1)。研究人员首次解析了NAMPT与小分子激活剂的晶体结构,在原子水平上观察到激活剂NAT作用于NAMPT的催化口袋内部,通过与酶活性位点附近区域的相互作用,促进两个底物NAM和PRPP的缩合形成NMN,提高NAMPT的催化效应,从而显示出对酶的别构激活作用。在此基础上,唐叶峰课题组采用理性药物设计理念,结合靶点和小分子复合物晶体结构信息,对NAT进行了系统地改造和优化(图3),最终获得了活性显著提高的候选药物分子NAT-5r。最近该研究团队还在《欧洲药物化学》上发表研究论文,详细报道了关于NAMPT小分子激活剂NAT的结构优化过程和构效关系研究,进一步揭示了此类小分子对NAMPT激活作用的关键分子机制。研究表明,NATs可增强细胞内NAD合成,并诱导代谢和转录重编程。重要的是,NATs在化疗诱导的外周神经病变的动物模型中表现出了良好的神经保护作用(图4)。与NAD前体相比,NATs具有以下优点: 能有效提升细胞内NAD含量;具有较好的生物利用度;有更大的结构空间进行药物特性的优化,合成简单,成本低,有利于后期开展临床研究;NAMPT激活剂的作用也会在限速步骤受到调节,以满足不同生理条件下细胞的需求。综上所述,此研究工作为理解神经退行性疾病的发生和发展提供新的视角,并在理论上提供NAD代谢物在神经保护中发挥重要作用的概念验证,从而为神经退行性疾病药物研发提供了潜在的候选靶点和药物。

图1:通过高通量筛选发现新型NAMPT小分子激活剂NAT

图2:通过NAT与NAMPT复合物晶体结构揭示小分子与靶点的作用模式

图3:针对先导化合物NAT进行结构改造和优化

图4:NAT和NAT-5r在小鼠CIPN模型中的神经保护效果

上述研究在《细胞研究》(Cell Research)和《欧洲药物化学期刊》(European Journal of Medicinal Chemistry)期刊上相继发表标题为“烟酰胺磷酸核糖转移酶小分子激活剂的发现及其临床前神经保护活性研究”(Discovery of small-molecule activators of nicotinamidephosphoribosyltransferase(NAMPT) and their preclinical neuroprotective activity)和“烟酰胺磷酸核糖转移酶小分子激活剂的优化及其体内神经保护活性研究”(Optimization of NAMPT Activators to Achieve in vivo Neuroprotective Efficacy)的两篇研究论文。

清华大学药学院王戈林研究员和唐叶峰研究员为《细胞研究》论文共同通讯作者,清华大学药学院2018级联合培养博士研究生项目(PTN)博士研究生姚红、药学院2017级博士研究生刘明辉、王雷博、俎玉萌和药学院2016级联合培养博士研究生项目(PTN)博士研究生吴愁为该论文共同第一作者,清华大学药学院2016级本科生李晨雨、张若曦博士、2020级博士研究生陆海根、李菲菲博士、唐叶峰课题组实验技术人员席爽、2017级博士生陈双全、2018级本科生谷炫瑜,清华大学生命科学学院熊巍研究员、杨茂君教授、刘天涯博士,北京大学神经科学研究所邢国刚教授、蔡捷博士,北京理工大学智能机器人与系统高精尖创新中心汪世溶研究员,全球健康药物研发中心花兰博士为共同作者。清华大学药学技术中心、X射线晶体学平台、代谢与脂质组学平台、细胞影像平台,北京生命科学研究所测序平台提供了重要帮助。此项工作得到了国家自然科学基金委、清华-北大生命科学联合中心、清华大学高精尖结构生物学中心、清华大学-丰田联合研究基金专项项目经费的支持。

清华大学药学院唐叶峰研究员和王戈林研究员为《欧洲药物化学期刊》论文共同通讯作者,药学院2017级博士研究生王雷博、刘明辉、俎玉萌为共同第一作者,清华大学药学院2018级联合培养博士研究生项目(PTN)博士研究生姚红、2016级联合培养博士研究生项目(PTN)博士研究生吴愁、马伟男、张若曦博士、2020级博士研究生陆海根、唐叶峰课题组实验技术人员席爽、刘阳,全球健康药物研发中心花兰博士为共同作者。此项工作得到了国家自然科学基金、北京自然科学基金、清华-北大生命科学联合中心、清华大学高精尖结构生物学中心、清华大学-丰田联合研究基金专项项目经费的支持。


鐗堟潈澹版槑锛
鏂囩珷鏉ユ簮清华大学新闻锛屽垎浜彧涓哄鏈氦娴侊紝濡傛秹鍙婁镜鏉冮棶棰樿鑱旂郴鎴戜滑锛屾垜浠皢鍙婃椂淇敼鎴栧垹闄ゃ

鐩稿叧瀛︽湳璧勮
杩戞湡浼氳

第二届无人系统与自动化控制国际学术会议(ICUSAC 2025)(2025-12-26)

2025年IEEE第八届算法,计算与人工智能国际会议 (ACAI 2025)(2025-12-26)

第二届遥感技术与图像处理国际学术会议(RSTIP 2025)(2025-12-26)

第二届模式识别与图像分析国际学术会议(PRIA 2025)(2025-12-26)

2025年创新设计与数字化转型国际会议(2025-12-26)

第五届通信技术与信息科技国际学术会议(ICCTIT 2025)(2025-12-26)

第五届人工智能与大数据国际学术研讨会 (AIBDF 2025)(2025-12-26)

2025物理学、量子计算与光学国际会议(ICPQCO 2025)(2025-12-27)

2026年数学、人工智能与金融学国际会议(ICMAIF 2026(2026-01-06)

2026智能电网信息工程、电缆工程与电气国际会议(CEEE 2026)(2026-01-06)

2025年工业制造、机械与新材料国际会议(IMMNM 2025)(2025-12-25)

2025生态环境、水污染与海洋生态国际会议(ICEEWPME 2025)(2025-12-26)

2025年人工智能与信号处理国际会议(ICAISP 2025)(2025-12-31)

2025年生物质能源、工业催化与节能减排国际会议(ICBEIC 2025)(2025-12-27)

2025年人工智能与工业制造国际会议(ICAIIM 2025)(2025-12-30)

2025年经济管理与金融信息、科技创新国际会议(ICEMFITI 2025)(2025-12-30)

2025年能源、水动力学与电力系统国际学术会议(ICEHPS 2025)(2025-12-24)

2025文化设计、信息技术与教育技术国际会议(ICCDITET 2025)(2025-12-28)

2025机械工程、热传递与力学国际会议(MEHTM 2025)(2025-12-25)

2025公共卫生与医疗健康大数据国际会议(IBDPH 2025)(2025-12-23)

灏忚创澹锛氬鏈細璁簯鏄鏈細璁煡璇㈡绱㈢殑绗笁鏂归棬鎴风綉绔欍傚畠鏄細璁粍缁囧彂甯冧細璁俊鎭佷紬澶氬鏈埍濂借呭弬鍔犱細璁佹壘浼氳鐨勫弻鍚戜氦娴佸钩鍙般傚畠鍙彁渚涘浗鍐呭瀛︽湳浼氳淇℃伅棰勬姤銆佸垎绫绘绱€佸湪绾挎姤鍚嶃佽鏂囧緛闆嗐佽祫鏂欏彂甯冧互鍙婁簡瑙e鏈祫璁紝鏌ユ壘浼氭湇鏈烘瀯绛夋湇鍔★紝鏀寔PC銆佸井淇°丄PP锛屼笁濯掕仈鍔ㄣ
缁煎悎鎺ㄨ崘鍖

瀛︽湳绉戠爺缃戝潃瀵艰埅锛430+绔欙紝瀹氬埗瀛︽湳涔︾

2025骞碔EEE绗簩灞婁簹澶绠楁妧鏈侀氫俊涓.

2025骞碔EEE绗叓灞婄畻娉曪紝璁$畻涓庝汉宸ユ櫤鑳.

绗簩灞婄數鍔涚數瀛愭妧鏈笌鐢电綉绯荤粺鍥介檯瀛︽湳浼氳锛圥.

2026鎷撳睍鐜板疄銆佷汉鏈轰氦浜掍笌浜哄伐鏅鸿兘鍥介檯鐮旇.

2026骞存柊涓浠f櫤鑳介氫俊涓庝俊鍙峰鐞嗙爺璁ㄤ細锛圢.

绗簲灞婄數瀛愪俊鎭伐绋嬩笌鏁版嵁澶勭悊鍥介檯瀛︽湳浼氳锛圗.

绗竷灞婃柊鏉愭枡涓庢竻娲佽兘婧愬浗闄呭鏈細璁紙ICAM.

绗簩灞婁汉宸ユ櫤鑳姐佹暟瀛楀獟浣撴妧鏈笌绀句細璁$畻鍥介檯瀛.

绗簩灞婄數姘斿伐绋嬩笌鏅鸿兘绯荤粺鍥介檯瀛︽湳浼氳锛圛C2.

绗洓灞婇氫俊缃戠粶涓庢満鍣ㄥ涔犲浗闄呭鏈細璁(CNM.

绗簲灞婅兘婧愬埄鐢ㄤ笌鑷姩鍖栧浗闄呭鏈細璁紙ICEU.

绗簩灞婁华鍣ㄤ华琛ㄤ笌瀵艰埅鎺у埗鍥介檯瀛︽湳鐮旇浼 (I.

2026骞寸浜屽眾鏃犵嚎涓庡厜閫氫俊鍥介檯浼氳(CWO.

2026骞寸浜斿眾浜氭床绠楁硶銆佽绠椾笌鏈哄櫒瀛︿範鍥介檯.

2026骞寸浜斿眾浜戣绠椼佽绠楁満瑙嗚鍜屽浘鍍忓鐞.

2026骞碔EEE绗叚灞婂厛杩涚數姘旓紝鐢靛瓙涓庤绠.

2026骞碔EEE绗叓灞婅蒋浠跺伐绋嬪拰璁$畻鏈虹瀛.

2026骞寸鍏眾璁$畻鏈哄浘褰㈠銆佸浘鍍忎笌鍙鍖栧浗.

2026骞村灏哄害浜哄伐鏅鸿兘鍥介檯浼氳锛圡AI 2.

2026 骞寸涓夊眾璁$畻锛屾満鍣ㄥ涔犱笌鏁版嵁绉戝鍥.

2026骞碔EEE绗竷灞婅绠楋紝缃戠粶涓庣墿鑱旂綉鍥.