当前位置:首页 >> 学术资讯 >> 科研信息

核研院新能源团队在电池安全研究领域取得一系列重要进展

2024/03/29

近年来,随着锂离子电池在新能源汽车等领域中的普及应用,电池安全问题日益受到关注,电池热失控引发安全事故成为业内共识,而内短路是最主要的热失控起因。在当前的电池结构中,隔膜是置于正极和负极之间的一张微孔薄膜,是电池中允许离子通过,同时又隔绝电子的重要部件。隔膜热收缩超过一定程度而引起电池内短路就会触发电池热失控,通常伴随着冒烟、起火甚至爆炸等剧烈反应,可使电池温度迅速升高至400~1000℃以上,导致严重的安全事故。因此,研究者们投入大量精力研究如何提升隔膜耐温性、抑制隔膜热收缩和电池内短路。在多年研究积累的基础上,清华大学核能与新能源技术研究院新能源团队近期取得了一系列新的发现,并产生了相应的技术成果。

20231016-电极串扰对电池安全和循环寿命的重要影响-无-核研院新能源团队在电池安全研究领域取得一系列重要进展.jpg

图1.电极串扰对电池安全和循环寿命的重要影响

经过深入研究,研究团队发现,正负极之间可能发生的物质的串扰也是电池热失控发生的重要机理,即使是微弱的串扰也会严重影响电池的性能。在过热情况下,高比能电池正极会产生强氧化性物种,负极会产生强还原性物种,这些氧化还原性物种会在电池内部电极之间形成串扰反应来触发电池热失控。研究团队深入分析了电极串扰的双向迁移特性,并且明确了电极串扰在高比能电池容量衰减中亦扮演着不可忽视的重要角色(图1),为研究高比能电池的失效机理打开了新的科学视角。相关成果以“抑制电极串扰的重要性:综述”The significance of mitigating crosstalk in lithium-ion batteries: a review)为题发表于《能源与环境科学Energy & Environmental Science)期刊。

20231016-高比能电池热失控触发机理-无-核研院新能源团队在电池安全研究领域取得一系列重要进展.jpg

图2.高比能电池热失控触发机理

在电极串扰触发热失控理论的基础上,研究团队进一步提出了高安全性隔膜的新策略,即同步阻隔内短路和电极串扰。因此,高安全性隔膜设计要同步考虑抑制内短路和阻隔电极串扰。研究团队采用凝胶态拉伸取向方式制备出纳米孔不收缩的聚酰亚胺隔膜,实现了对这两种过程的同时抑制,进而有效抑制电池的热失控(图2)。相关成果以“同步抑制内短路和电极串扰的纳米孔不收缩隔膜用于安全电池Simultaneously Blocking Chemical Crosstalk and Internal Short Circuit via Gel-Stretching Derived Nanoporous Non-Shrinkage Separator for Safe Lithium-Ion Batteries)为题发表于《先进材料》(Advanced Materials)期刊。

20231016-电池热失控触发机理与高安全性隔膜调制理论-无-核研院新能源团队在电池安全研究领域取得一系列重要进展.jpg

图3.电池热失控触发机理与高安全性隔膜调制理论

同时,针对目前行业内大规模应用的电池体系和烯烃隔膜隔膜材料,研究团队从补齐当前电池安全短板的角度出发,基于微凹版印刷和原位相转化的方法,通过在聚烯烃基底表面构筑具有连续多孔结构的复合功能层,一方面调控隔膜的热机械性能,另一方面调控隔膜的表面微结构,建立了一种双连续复合隔膜制备技术。相比于常规130~150℃就收缩熔融,该双连续隔膜即使在250℃以上也不发生尺寸收缩,并且具有热响应闭孔的特性,能够阻止电极间物质串扰,有效提升了电池的本征安全性(图3)。相关研究成果以“基于双连续复合隔膜抑制热诱导的串扰提升电池安全Boosting Battery Safety by Mitigating Thermal-Induced Crosstalk with a Bi-Continuous Separator)为题发表于《先进能源材料》(Advanced Energy Materials)期刊。

清华大学博士后宋有志为论文的第一作者,清华大学核能与新能源技术研究院新型能源与材料化学研究室王莉副研究员和何向明研究员为论文的共同通讯作者。该系列研究成果得到国家自然科学基金、国家重点研发计划的资助,清华大学高性能计算中心提供了计算资源的支持。


版权声明:
文章来源清华大学新闻,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。

相关学术资讯
近期会议

2025年清洁能源、电力系统与可持续发展国际会议(CEPSSD 2025)(2025-10-28)

2025年电力系统与电器工程国际会议(ICPSEE 2025)(2025-10-29)

2025年第四届计算与人工智能国际会议(ISCAI 2025)(2025-11-14)

2025年设计、数字媒体与多媒体技术国际会议(DDMMT 2025)(2025-11-20)

2025年IEEE电路与系统前沿技术国际会议(FTCS 2025)(2025-11-21)

第一届光电材料与电子信息工程国际学术会议 (OMEIE 2025)(2025-11-21)

2025年船舶、海洋工程与应用技术国际会议(ICSOEAT 2025)(2025-11-24)

第二届自动化、电气控制系统与设备国际学术会议(AECSE 2025)(2025-11-28)

第五届肿瘤治疗与转化医学国际研讨会(CTTM 2025)(2025-11-28)

2025年机械电子与自动化国际研讨会(ISMA 2025)(2025-11-28)

2025年区块链、数字经济与信息系统国际会议(ICBDEIS 2025)(2025-11-26)

2025通信工程、信号处理与神经形态计算国际会议(CESPNC 2025)(2025-11-23)

2025年物流、系统工程与供应链管理国际会议(LSESCM 2025)(2025-11-7)

2025年文学、艺术与人文发展国际学术会议(ICLAHD 2025)(2025-12-14)

2025年物流系统、智能轨道与交通运输工程国际会议(ICLSIRTE 2025)(2025-11-19)

2025年先进成形技术、增材制造与材料科学国际会议(ICAFTMS 2025)(2025-12-7)

2025年绿色能源、环境研究与可持续发展国际会议(IGERD 2025)(2025-12-11)

2025年遥感技术、地理信息系统与海洋学国际会议(IRTGSO 2025)(2025-11-6)

2025年数字化社会与数字经济国际会议(ICDSDE 2025)(2025-11-21)

2025年电子技术与并行、分布式处理国际会议(ETPDS 2025)(2025-12-22)

小贴士:学术会议云是学术会议查询检索的第三方门户网站。它是会议组织发布会议信息、众多学术爱好者参加会议、找会议的双向交流平台。它可提供国内外学术会议信息预报、分类检索、在线报名、论文征集、资料发布以及了解学术资讯,查找会服机构等服务,支持PC、微信、APP,三媒联动。