褰撳墠浣嶇疆锛棣栭〉 >> 学术资讯 >> 科研信息

北大研究团队发现水分子诱导的离子聚集行为

2023/12/19

近日,北京大学物理学院量子材料科学中心、轻元素先进材料研究中心江颖教授、徐莉梅教授、王恩哥院士与北京大学化学与分子工程学院高毅勤教授、北京大学定量生物学中心宋晨研究员等合作,利用自行研发的基于高阶静电力的qPlus型原子力显微镜(qPlus-AFM)技术,结合第一性原理计算和分子动力学模拟,发现表面上的碱金属离子在水分子作用下能够产生等效吸引力,从而克服离子间的强库仑排斥力,自发聚集成高度有序的一维链状结构,该结果为理解离子通道内离子的超快输运提供了微观物理图像。2023年12月4日,相关工作以《水分子诱导的界面处碱金属离子的一维聚集》(“Nanoscale one-dimensional close packing of interfacial alkali ions driven by water-mediated attraction”)为题,在线发表于《自然·纳米技术》(Nature Nanotechnology)。

在生物离子通道中,离子的高透过性和高选择性对于生物细胞内外离子平衡的维持极为重要。这种离子传输现象也是海水淡化、离子电池和信息传递等多个领域的研究焦点。然而,由于缺乏原子层次的实验表征,离子通道的传输机制仍存在争议。例如,在生物钾离子通道中,钾离子的传输方式究竟是紧密排布的直接库仑撞击(direct Coulomb knock on)还是有水分子介导的松散库仑撞击(soft Coulomb knock on),这一点尚未有定论。最近,二维人工离子通道的研究也发现,在高离子浓度下会发生超快选择性输运,并推测与离子的密堆积有关,但具体机制并不清楚。因此,实验上直接揭示离子及水分子在受限环境中的微观结构对于澄清离子通道的输运机制非常必要。

为了模拟受限环境,研究人员在不同的材料表面(Au、Pt、Graphene等)沉积了单层和亚单层的碱金属原子与水分子。碱金属原子与衬底发生电荷转移形成碱金属离子,并与水分子结合形成水合离子。对于钾离子,其单个水合物是由一个钾离子结合四个水分子形成。水合钾离子可以通过脱水聚合,形成致密链状结构,脱去的水分子在链侧边形成额外的氢键以稳定整个结构。相比之下,钠离子与水分子之间的相互作用更强,钠离子之间有水分子介入,导致其无法紧密排列,而且含有更加延展的氢键网络(图1)。研究表明,水分子-水分子与水分子-离子相互作用之间的竞争,会导致等效的离子吸引力,从而克服离子间的强库仑排斥力,驱使离子一维聚集。

图1 Au(111)表面上钾离子、钠离子与水分子自组装形成的一维网络STM实验图(第一列),高分辨AFM实验图(第二列,第三列)以及原子结构模型图(第四列)

在水的二维网络中,研究人员发现碱金属离子在高浓度下也会形成一维的致密离子阵列。此现象与凝聚态物理中关联电子材料的电子向列相有相似性,都源于某些相互作用之间的竞争。离子-离子间相互作用以及水分子-水分子间相互作用相当时,便会导致离子向列相。一旦形成一维离子链和离子向列相,离子的输运就不再是个体行为,而是采取类似于“牛顿摆”的库仑撞击模式。相比于无序的离子扩散,这种集体运动模式会显著促进离子定向快速输运。

图2 牛顿摆模型示意图与水合钾离子向列相高分辨AFM图与原子结构模型图

离子通道的高选择性和高透过率与受限环境下水合离子的微观结构高度相关。本工作首次在原子尺度上揭示了碱金属离子与水分子在表面上形成致密离子链与离子阵列,突显了离子-离子、离子-水和水-水相互作用之间的复杂竞争在离子自发聚集和结构相变中的关键作用,有助于理解离子通道的超快离子输运机制。此外,这些离子链中钾离子可紧密接触,而钠离子之间有水分子介入,这一发现为钾离子通道在传输速率上通常优于钠离子的现象提供了可能解释。

北京大学物理学院量子材料科学中心田野和洪嘉妮(扫描探针实验)、宋易知(第一性原理计算),北京大学化学与分子工程学院夏义杰(分子动力学模拟)为文章的共同第一作者,高毅勤、徐莉梅、王恩哥和江颖为文章的共同通讯作者,宋晨为实验结果的解读提供了重要帮助。这项工作得到了国家自然科学基金、科技部重点研发计划项目、新基石研究员项目与科学探索奖等经费支持。



鐗堟潈澹版槑锛
鏂囩珷鏉ユ簮北京大学新闻网锛屽垎浜彧涓哄鏈氦娴侊紝濡傛秹鍙婁镜鏉冮棶棰樿鑱旂郴鎴戜滑锛屾垜浠皢鍙婃椂淇敼鎴栧垹闄ゃ

鐩稿叧瀛︽湳璧勮
杩戞湡浼氳

2025年清洁能源、电力系统与可持续发展国际会议(CEPSSD 2025)(2025-10-28)

2025年电力系统与电器工程国际会议(ICPSEE 2025)(2025-10-29)

2025年第四届计算与人工智能国际会议(ISCAI 2025)(2025-11-14)

2025年设计、数字媒体与多媒体技术国际会议(DDMMT 2025)(2025-11-20)

2025年IEEE电路与系统前沿技术国际会议(FTCS 2025)(2025-11-21)

第一届光电材料与电子信息工程国际学术会议 (OMEIE 2025)(2025-11-21)

2025年船舶、海洋工程与应用技术国际会议(ICSOEAT 2025)(2025-11-24)

第二届自动化、电气控制系统与设备国际学术会议(AECSE 2025)(2025-11-28)

第五届肿瘤治疗与转化医学国际研讨会(CTTM 2025)(2025-11-28)

2025年机械电子与自动化国际研讨会(ISMA 2025)(2025-11-28)

2025年智慧能源与电力系统优化国际会议(ICSEPSO 2025)(2025-11-27)

2025制造业、工业信息学与智能管理国际会议(MIIIM 2025)(2025-11-22)

2025年量子计算、检测技术与精密测量国际会议(IQDTP 2025)(2025-12-16)

2025年健康心理学、生物医学与公共卫生国际会议(HPBPH 2025)(2025-12-16)

2025年岩土工程、交通工程与地质工程国际会议(ICGETEGE 2025)(2025-12-8)

2025智慧物流、交通运输工程与城市建设国际会议(SLEUC 2025)(2025-11-4)

2025年工业智能与模型设计国际会议(ICIIMD 2025)(2025-12-7)

2025年土木工程、绿色建筑与环境管理国际会议(ICCEGBEM 2025)(2025-12-19)

2025年网络通信、计算机工程与隐私计算国际会议(INEPC 2025)(2025-12-25)

2025年大数据、物联网与智慧城市国际会议(BDITSC)(2025-11-26)

灏忚创澹锛氬鏈細璁簯鏄鏈細璁煡璇㈡绱㈢殑绗笁鏂归棬鎴风綉绔欍傚畠鏄細璁粍缁囧彂甯冧細璁俊鎭佷紬澶氬鏈埍濂借呭弬鍔犱細璁佹壘浼氳鐨勫弻鍚戜氦娴佸钩鍙般傚畠鍙彁渚涘浗鍐呭瀛︽湳浼氳淇℃伅棰勬姤銆佸垎绫绘绱€佸湪绾挎姤鍚嶃佽鏂囧緛闆嗐佽祫鏂欏彂甯冧互鍙婁簡瑙e鏈祫璁紝鏌ユ壘浼氭湇鏈烘瀯绛夋湇鍔★紝鏀寔PC銆佸井淇°丄PP锛屼笁濯掕仈鍔ㄣ
缁煎悎鎺ㄨ崘鍖

瀛︽湳绉戠爺缃戝潃瀵艰埅锛430+绔欙紝瀹氬埗瀛︽湳涔︾

2025骞碔EEE绗叓灞婃満鍣ㄥ涔犲拰鑷劧璇█澶.

2025骞碔EEE绗叓灞婃暟鎹瀛︿笌淇℃伅鎶鏈浗.

2025骞寸鍥涘眾閫氫俊锛屼俊鎭郴缁熶笌鏁版嵁绉戝鍥介檯.

2025骞存暟鎹瀛︿笌鏅鸿兘绯荤粺鍥介檯浼氳(DSI.

绗洓灞婃暟鐞嗙粺璁′笌缁忔祹鍒嗘瀽鍥介檯瀛︽湳浼氳 (MS.

绗笁灞婁俊鎭寲鏁欒偛涓庝汉宸ユ櫤鑳藉浗闄呭鏈細璁紙IC.

绗簲灞婃娴嬫妧鏈笌鏅鸿兘绯荤粺鍥介檯瀛︽湳浼氳锛圖TI.

2025 骞寸浜屽眾浜氭床鏅鸿兘鐢电綉锛岀豢鑹茶兘婧愪笌搴.

2025骞碔EEE绗洓灞婂厛杩涚殑鐢靛瓙銆佺數姘斿拰缁.

绗簲灞婄幆澧冩薄鏌撲笌娌荤悊鍥介檯瀛︽湳浼氳 (ICEP.

2025骞寸鍥涘眾鍏堣繘鐨勭數鍔涚郴缁熷拰鑳芥簮宸ョ▼鍥介檯.

2025骞寸浜屽眾IEEE浜氭床鍏堣繘鐢垫皵涓庣數鍔涘伐.

绗竷灞婃按鍒╀笌鍦熸湪寤虹瓚宸ョ▼鍥介檯瀛︽湳浼氳锛圚CC.

绗簲灞婄數瀛愰氫俊涓庤绠楁満绉戝鎶鏈浗闄呭鏈細璁紙.

2025骞碔EEE绗簩灞婁簹澶绠楁妧鏈侀氫俊涓.

2025骞碔EEE绗叓灞婄畻娉曪紝璁$畻涓庝汉宸ユ櫤鑳.

绗簩灞婇仴鎰熸妧鏈笌鍥惧儚澶勭悊鍥介檯瀛︽湳浼氳锛圧ST.

2026宓屽叆寮忕郴缁熴佺Щ鍔ㄩ氫俊涓庤绠楀浗闄呬細璁紙.

绗簲灞婄數瀛愪俊鎭伐绋嬩笌鏁版嵁澶勭悊鍥介檯瀛︽湳浼氳锛圗.

绗竷灞婃柊鏉愭枡涓庢竻娲佽兘婧愬浗闄呭鏈細璁紙ICAM.

2026骞寸浜斿眾浜氭床绠楁硶銆佽绠椾笌鏈哄櫒瀛︿範鍥介檯.

2026骞碔EEE绗叚灞婂厛杩涚數姘旓紝鐢靛瓙涓庤绠.

2026骞碔EEE绗竷灞婅绠楋紝缃戠粶涓庣墿鑱旂綉鍥.