当前位置:首页 >> 学术资讯 >> 科研信息

深研院孟鸿课题组开发了可修复和多种环境适用的凝胶并应用于无离子泄露风险的离电传感器

2024/04/11

水凝胶材料是实现柔性/可拉伸电子器件应用的候选材料之一,具有生物相容性,优异拉伸性等优点。但由于含水量存在环境稳定性差的问题,即低温下冻结,干燥环境下失水,高湿度下吸水膨胀。添加有机溶剂可以提升抗冻和保水能力,但是目前的研究多聚焦于添加大量甘油使得水凝胶在低温和干燥环境下使用,却忽略了此时高湿度下水凝胶的使用问题。另一方面,传感器是水凝胶的重要应用方向。其中,离电型传感器因为灵敏度高,抗干扰能力强等优点在近年来备受关注。但是目前用于该类型传感器的材料存在离子泄露,以及受潮湿度影响较大的缺陷。

图1 基于內盐型凝胶的离电型传感器无离子泄露的风险。经绿色溶剂改性水凝胶介电层,传感器可于高温、雨天、低温等环境使用

针对以上问题,近日,北大深圳研究生院新材料学院孟鸿课题组在国际知名期刊Advanced Materials上发表题为“Wide Humidity Range Applicable, Anti-Freezing and Healable Zwitterionic Hydrogels for Ion-Leakage-Free Iontronic Sensors”的研究论文(DOI: 10.1002/adma.202211617)。该研究在內盐型DMAPS水凝胶中加入了一种绿色溶剂——丙酮缩甘油(solketal),在较宽的湿度范围下,solketal水凝胶的水含量和机械性能稳定性方面优于最常用的溶剂——甘油。此外,得益于solketal的存在,一种疏水性的低聚物液体(PPG)可以被引入,以进一步改变水凝胶的特性。所得的水凝胶在湿度为30%至90%RH和温度为-20至40°C的范围内实现了约2000%的断裂应变,并具有良好的自愈性。利用水凝胶中的两性离子基团和稳定的水含量,优化后的水凝胶被用作电介质层来构建一个离子型压力传感器,实现了无泄漏离子、高灵敏度(>1100kPa-1)、广泛的湿度和温度适用性。研究人员通过将水凝胶基底与Ag@poly(DMAPS)浆料相结合,得到宽湿度的可愈合和可拉伸电极,并将高性能的电极和电介质层整合在一起,开发了一个全器件可愈合的高灵敏度传感器。

通过对含四种不同有机高沸点溶剂的聚DMAPS水凝胶进行对比分析,研究人员发现了含有solketal的水凝胶在多种环境下具备最优异的稳定性和可用性,特别是含量达21% vol.的情况下,水凝胶在潮湿和干燥环境下都具有一致的断裂伸长率(约1200%)。同时,由于solketal的独特特性,可以在不添加表面活性剂和小分子电解质的情况下加入疏水的PPG,在水凝胶内部引入疏水胶束结构进一步提高性能,优化后的DS21P2水凝胶在宽湿度和温度条件下都展现出优异的力学性能和可自愈性。

图2 聚(DMAPS)水凝胶的优化与性能表征

研究人员将solketal与目前最常用的甘油相比较,发现solketal水凝胶在宽湿度范围内展现出更好的含水量和性能稳定性。采用MD和DFT计算进行了原理解释,发现环境水分变化时,solketal分子结合的H2O分子数变化更少。这是因为,solketal-H2O体系对第2个H2O分子的结合能更低,这意味着solketal分子不太可能失去第2个H2O分子;solketal-H2O体系对第4和第5个配位的H2O分子的结合能更高,标志着在高湿度下会结合更少的H2O分子。因此,solketal水凝胶显示更好的环境稳定性。

图3 含甘油或solketal的水凝胶性能比较及分子理论计算表征

离电型传感器主要是利用EDL的超级电容特性来实现高灵敏度等特性。由于DS21P2水凝胶聚合物链上有许多锚定在聚合物链上的两性离子基团,且能够在广泛的湿度水平上含有相对稳定的水含量,所以能够产生丰富的自由离子,与电极形成EDL,因此将其双面微结构化后作为传感器的介电层。所得器件在多种环境条件下展现出优异的性能(灵敏度均>1100 kPa-1),更重要的是具备离子安全性,在浸泡24小时后性能毫无衰减。

图4 DS21P2水凝胶应用于离电型传感器:原理及性能表征

研究人员为了实现器件的可拉伸性和自愈性,将DS21P2水凝胶作为基底制备了高性能且可自愈的可拉伸电极。将电极与水凝胶介电层集成,得到可拉伸的高性能传感器。由于水凝胶的自愈性,该器件可直接佩戴在人体上,在50%应变下仍有响应。更重要的是,该器件的每一部分都可实现快速的自愈合,在实际使用中具有独特优势。

图5 可拉伸可自愈传感器性能及佩戴时的自愈合展示

孟鸿和张超红研究员为该论文共同通讯作者,新材料学院2020级硕士生赵怡茜为论文的第一作者。上述研究得到国家自然科学基金委员会,广东省基础与应用基础研究基金委员会,深圳市科技创新委员会的支持。


版权声明:
文章来源北京大学新闻网,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。

相关学术资讯
近期会议

2025年第五届智能机器人与系统国际会议(ISoIRS 2025)(2025-06-13)

第十一届传感器、机电一体化和自动化系统国际学术研讨会(ISSMAS 2025)(2025-06-13)

2025年初级、中级、高级技术经理人培训班(6月线上)(2025-06-18)

第九届水动力学与能源电力系统国际学术会议(HEEPS 2025)(2025-06-20)

第六届电子通讯与人工智能国际学术会议(ICECAI 2025)(2025-06-20)

2025 年第三届通信,计算与人工智能国际会议 (CCCAI 2025)(2025-06-20)

第六届机械工程、智能制造与机电一体化学术会议(MEIMM2025)(2025-06-27)

第三届管理创新与经济发展国际学术会议(MIED 2025)(2025-06-27)

第十届电子技术和信息科学国际学术会议(ICETIS 2025)(2025-06-27)

2025年应用心理学与社会环境国际会议(ICAPSE 2025)(2025-06-28)

2025生态学、环境设计与大气科学国际会议(EEDAS 2025)(2025-7-19)

2025年地图制图学与地理信息工程国际会议(ICCGIE 2025)(2025-6-29)

2025年机械设计,自动化与智能系统国际会议(MDAIS 2025)(2025-6-29)

2025计算机网络、智能计算与控制工程国际会议(ICCNICCE 2025)(2025-7-24)

2025年冶金工程、污染控制与化学工程国际学术会议(MEPCCE 2025)(2025-6-25)

2025金融工程、投资学与经济决策国际会议(FEIEDM 2025)(2025-7-21)

2025运输工程、智慧交通与现代物流国际会议(TEITML 2025)(2025-7-21)

2025年数字媒体与商业文化传播国际会议(ICDMBCC 2025)(2025-6-27)

2025年可持续发展与能源科技国际研讨会(ISSDET 2025)(2025-6-30)

2025集成电路、微电子与信息工程国际会议(ICMIE 2025)(2025-7-19)

小贴士:学术会议云是学术会议查询检索的第三方门户网站。它是会议组织发布会议信息、众多学术爱好者参加会议、找会议的双向交流平台。它可提供国内外学术会议信息预报、分类检索、在线报名、论文征集、资料发布以及了解学术资讯,查找会服机构等服务,支持PC、微信、APP,三媒联动。