当前位置:首页 >> 学术资讯 >> 科研信息

北京大学地空学院宗秋刚团队发现微观粒子加速器结构

2024/03/21

磁化的湍流等离子体中的相干结构在质量传递、能量耗散和粒子加热中发挥着重要作用。电子尺度相干结构是一种极小的间歇结构,其中级联到电子尺度的湍流能量被耗散,从而为电子提供能量。天体物理学和空间物理学中一个长期未解决的问题是能量如何在电子尺度上耗散的。

为了回答这些问题,北京大学地球与空间科学学院宗秋刚教授带领的研究团队最近以“Electron scale coherent structure as micro accelerator in the Earth's magnetosheath”为题在学术期刊Nature Communications(《自然·通讯》)发文,发现了空间等离子体中存在一种新型电子尺度相干结构,该结构中的平行电场和磁场可以将电子从各向同性转变为俘获和流(Strahl)分布。这一新发现的机制有助于解释空间和天体系统中电子尺度的能量耗散以及等离子体的加热加速问题。

等离子体湍流是人类尚未完全理解的基本物理现象之一,可能存在于如早期宇宙、蟹状脉冲星、星际介质、行星磁层等整个宇宙范围内。在等离子体湍流中,从大尺度到小尺度的能量转移以及场和粒子之间的能量转换过程非常复杂。人们认为等离子体湍流可能在例如日冕加热和宇宙射加速等粒子能量化过程中发挥关键作用。湍流研究的一个主要挑战是多尺度耦合。尽管磁流体动力学(MHD)理论可以很好地描述大尺度物理过程,但目前人们仍不清楚等离子体动力学尺度和电子尺度中能量的耦合方式。

能量传递分布不均匀的湍流中可以自洽地形成各种相干结构,例如涡流和电流片等。为了寻找空间等离子体、实验室等离子体和数值等离子体中的相干结构,人们付出了巨大的努力。人们认为这些结构与湍流能量级联和耗散机制有直接联系,并且尺度可能从大尺度到动力学尺度不等。

最近发射的磁层多尺度(MMS)任务将太空探索推进到了电子动力学尺度。通过 MMS 测量的磁鞘中的湍流可以定量分解为从离子尺度到亚电子尺度的各种波模:动理学阿尔芬波、哨声波和离子声波。最近的进展表明,耗散也可能是通过波粒相互作用发生的。在空间等离子体环境中已经识别并报道了一系列电子尺度相干结构,如电子尺度磁洞、电子尺度电流片等。目前认为湍流能量最终可能会在电子尺度上消散,所以对这些结构的研究具有重要的意义。然而,在磁化等离子体中,湍流能量可以级联到的最小尺度仍然是一个基本问题。

在研究中,宗秋刚团队通过详细分析美国NASA的MMS获得的数据,报告了一种新型电子尺度相干结构,观测结果如图1和图2所示,磁场强度峰值区域出现扭曲的磁场线和俘获电子,并伴有非零的平行电场分量。结构的尺度大小可以通过使用“电子回旋遥测”方法来估计。该方法使用了“电子回旋各向异性”作为度量太空等离子体结构边界的方法,把电子回旋半径当成一把测量结构的“尺子”。结果表明,边界到航天器的平均距离约为2.2个电子回旋半径。团队开发了一个考虑场向电势降和磁镜力的电子捕获模型,并发现电子捕获和加速可以很好地归因于沿场向的电势变化。在该模型中,电子在结构的中心被双极平行电场俘获并在磁场极大区加速。在结构的末端,由于向外平行的电场力和向外磁镜力的共同作用,形成了双向电子喷流(图3)。

9cdf1b4e220f49f0a99b040c7dc9f586.jpg

图1 2015年9月21日Magnetospheric Multiscale卫星对相干结构的电磁场、等离子体环境和多个能量通道上的电子投掷角分布的观测结果

e4a52bb659ba445da59a77781aa8ea2a.jpg

图2 不同时刻速度空间中的电子能量通量,以及考虑场向电势的捕获线

dddbf76a328f409d8431f33270e8f0ca.jpg

图3 沙漏状电子尺度相干结构示意图。结构中存在捕获电子和非零平行电场

研究发现的空间等离子体结构中存在电子的加热和加速等现象。这些发现为进一步理解湍流能量耗散以及空间等离子体相干结构的产生提供了新的思路。

北京大学地球与空间科学学院空间物理与应用技术研究所博士研究生解子康为本论文的第一作者,宗秋刚为文章的通讯作者,其他合作者包括北京大学空间所周煦之研究员、刘志扬博士、乐超研究员、何健森教授、郝以鑫博士,山东大学张慧教授等。相关工作得到了国家自然科学基金、科技部重点研发计划,澳门科学技术发展基金等项目的支持。

参考文献

Z.-K. Xie, Q.-G. Zong, C. Yue, X.-Z. Zhou, Z.-Y. Liu, J.-S. He, Y.-X. Hao, C.-S. Ng, H. Zhang et al.Electron scale coherent structure as micro accelerator in the Earth’s magnetosheath. Nat Commun. 15, 886 (2024). 


版权声明:
文章来源北京大学新闻网,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。

相关学术资讯
近期会议

2025艺术、服装设计与纺织科学国际会议(FDTS 2025)(2025-07-26)

第八届声学、振动、噪声控制国际研讨会(CAVNC 2025)(2025-08-09)

2025年矿山工程、地质工程与环境工程国际会议(ICMEGEEE 2025)(2025-08-10)

标准化、信息化、智能化(AI)赋能科技成果评估转化与高价值专利布局高级研修班(8月青岛)(2025-08-13)

第六届清洁能源与电力工程国际学术会议(ICCEPE 2025)(2025-08-15)

2025年可信大数据与人工智能国际会议(ICTBAI2025)(2025-08-21)

2025年第三届智能制造与自动化前沿国际会议(CFIMA 2025)(2025-08-22)

第六届物联网、人工智能与机械自动化国际学术会议 (IoTAIMA 2025)(2025-08-22)

第五届测量控制与仪器仪表国际学术会议(MCAI 2025)(2025-08-22)

第十届工程机械与车辆工程新进展国际学术会议(ICACMVE 2025)(2025-08-22)

2025年光学成像、图像与光电信息国际学术会议(ICOIIOI 2025)(2025-8-16)

第六届先进功能材料国际研讨会 (CAFM 2025)(2025-8-9)

2025年数字人文、文化遗产与技术创新国际会议(ICDHCHTI 2025)(2025-8-3)

2025年数字化制造与3D打印国际学术会议(ICDMT 2025)(2025-8-31)

2025年环境,化学工程与能源国际会议(ICECEE 2025)(2025-9-22)

2025年智能制造与数字化工厂国际学术会议(ICIMDF 2025)(2025-8-21)

2025年结构振动、土木工程与智能控制国际会议(ISVEIC 2025)(2025-8-18)

2025风险管理、信息经济与金融科技国际会议(RMIEFTC 2025)(2025-9-19)

2025生态农业、植物学与生物信息学国际会议(EABB 2025)(2025-9-25)

2025大数据经济、对外贸易与会计学国际会议(BDEFTA 2025)(2025-9-15)

小贴士:学术会议云是学术会议查询检索的第三方门户网站。它是会议组织发布会议信息、众多学术爱好者参加会议、找会议的双向交流平台。它可提供国内外学术会议信息预报、分类检索、在线报名、论文征集、资料发布以及了解学术资讯,查找会服机构等服务,支持PC、微信、APP,三媒联动。