西安交大周迪教授团队在聚合物储能领域取得系列进展
2025/12/09
具有高压耐受性、低介电损耗以及良好工作稳定性的介质聚合物在静电电容器中得到广泛应用。随着生产和生活需求的增加,需要聚合物介质电容器应用在高温和高电压相关的恶劣环境中。然而,与介电陶瓷相比,大多数现有商用聚合物电介质只能在相对较低的温度下工作(低于105℃),工作温度较高时,其绝缘和储能性能会严重退化。聚合物在高温下的电荷注入、激发和传输会导致漏电流的指数级增加,从而导致放电能量密度低和放电效率差,这使得聚合物难以满足电气设备高温高功率的要求。
高玻璃化转变温度(Tg)被认为是高温聚合物介电材料的关键因素,聚合物链高于Tg会失去刚性,增加自由体积,从而导致介电常数和损耗因子的较大变化。代表性高Tg的聚合物如聚酰亚胺(PI)、聚醚酰亚胺(PEI)、聚碳酸酯(PC)等,这些聚合物具有良好的热稳定性,但当高电场和高温一起作用时,其储能性能远不如室温下的表现。前期研究表明,在高温高电场条件下,聚合物电介质的传导损耗主要遵循跳跃传导机制。因此,为了进一步提高聚合物在高温高电场下的绝缘性能,在其内部引入电荷陷阱以减小电荷跳跃传导距离被认为是一种有效的策略。
基于上述研究背景,周迪教授团队提出了一种由界面调控的多能级陷阱工程策略,通过一步浸泡涂覆结合热压工艺,制备全有机三明治结构复合薄膜。将高电子亲和能的有机半导体1,4,5,8-萘四甲酸二酐(NTCDA)引入聚(偏二氟乙烯-六氟丙烯)(P(VDF-HFP))中,并将其涂覆在聚对苯二甲酸乙二醇酯(PET)上,利用热压工艺在涂覆膜的两侧结合纯PET薄膜。NTCDA与P(VDF-HFP)之间的能带偏移产生多能级深陷阱,层与层之间的界面作用为载流子提供有效阻挡。陷阱与层间阻隔的协同作用显著抑制了电荷传输与漏电流(如图1所示),使材料在25 ℃下展现出增强的击穿强度(Eb ~ 678.6 MV·m-1)以及优异的储能性能(Ud ≈ 8.2 J·cm-3,效率η ≈ 94.3 %),在高温下,该材料仍保持6.4 J·cm-3的高Ud,为开发兼具高热稳定性与高效率的前沿储能用聚合物电介质提供了一种有效途径。
图1 界面调控的多能级陷阱工程策略实现聚合物电介质优异储能性能
此外,无机宽带隙纳米填料的引入也会在聚合物基体中构建电荷陷阱,从而在复合材料中削弱载流子在高温下的传输,但由范德华力、氢键以及静电作用驱动的填料固有团聚问题仍是一个关键却常被忽视的挑战。这些团聚现象会导致介电响应不均一、击穿强度下降以及机械性能退化。为此,周迪教授团队提出了一种精确调控超低添加量氧化镁纳米片填料在聚合物基体中分布的策略,可有效抑制纳米填料团聚与电荷积累,实现电场分布均匀,同时最小化界面介电不匹配和局部电场畸变。得益于此策略,所构建的三层复合膜即使在极端高温条件下仍保持卓越的储能性能(如图2所示)。在150 ℃下,其Ud可达到7.82 J·cm-3,η为87.47 %,更为显著的是在200 ℃下,该复合材料仍能提供4.17 J·cm-3的高Ud,且效率超过90 %,其储能密度相较纯PEI提升近十倍,同时也优于当前的商用聚合物电介质、新型合成聚合物及各类聚合物复合材料。该研究为解决纳米填料在聚合物中的团聚问题提供了新的思路。
图2 精确调控超低添加量氧化镁纳米片填料分布以实现聚合物优异储能性能
上述研究成果分别以《界面层调控的多级陷阱工程用于提升聚对苯二甲酸乙二醇酯电介质薄膜的储能性能》《精确调控氧化镁纳米片分布的三明治结构聚合物复合材料实现高温条件下的卓越介电储能性能》为题发表在国际期刊《纳米能源》(Nano Energy)上。论文第一作者分别为西安交通大学电信学部电子科学与工程学院博士生刘涛和韩颖,共同通讯作者包括西安交通大学电信学部电子科学与工程学院周迪教授、李晓副教授,电气工程学院刘文凤教授、周垚教授,同济大学翟继卫教授,杭州电子科技大学周涛副教授,以及马来西亚博特拉大学KarBan Tan副教授,西安交通大学为该工作第一完成单位。
文章来源西安交大,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。
-
2026年1月高含金量国际学术会议合 12-12
-
第四届金融科技与商业分析国际学术会议 686
-
2026年第十一届复合材料与材料工程 1453
-
2025年机器视觉、智能成像与模式识 2126
-
2025年智能光子学与应用技术国际学 3284
-
2026年机械工程,新能源与电气技术 3476
-
2025年计算机科学、图像分析与信号 3917
-
2025年材料化学与燃料电池技术国际 3633
-
2026年交通数字化、人工智能与韧性 12-19
-
2026年社会文化与公共管理国际会议 12-19
-
2026年人文地理与语言研究国际会议 12-19
-
2026年社会发展与经济发展国际会议 12-19
-
2026年光伏材料、光电转换与可再生 12-19
-
2026年可持续发展与数字化社会国际 12-19
-
2026年管理科学、语言与教育国际会 12-19
-
2025年两院院士增选有效候选人2672
-
2025最新JCR分区及影响因子7552
-
好学术:科研网址导航|学术头条分3540
-
2025年国际期刊预警名单发布!3510
-
2025年中科院期刊分区表重磅发13412
-
中国科协《重要学术会议目录(207866
-
吉林大学校长张希:学术会议中的提4517
-
中国科大提出电化学一体化驱动策12-19
-
中国科大实现电泵浦片上集成高亮度12-19
-
西北农林科技大学【陕西新闻联播】12-19
-
中国科大实现片上非相干泵浦高品质12-19
-
中国科大中性原子量子计算研究成果12-19
-
炔烃远端C-O键的不对称活化转化12-19
-
研究揭示叶片内生真菌分子功能多样12-19
-
科研人员提出柑橘黄龙病防控新策略12-19
-
WILL 24310

-
apise 23430

-
北京电源行业协会 23438

-
中科创大创业教育投资管理有限公司 24312

-
水利部黄河水利委员会国科局 18293

-
浙江省书法家协会 18140

-
中国岩土锚固工程协会 18278

-
武汉千学信息咨询有限公司 8222

-
上海唐朝酒店 18009

-
中国海洋石油总公司 24166

-
中国beb会议主办方 18190

-
上海宜星文化传播有限公司 2201

-
VFEAVW 8059

-
QQ 8105

-
南京医格尔信息科技有限公司 21309

-
杨浦区四平路总工会 18282

-
中国工程物理研究院机械制造工艺研 8208

-
湖北研学博科文化传播有限公司 8187

-
中国环境科学学会 24055

-
成夏 23316

















31











































