中国科学院大学材料科学与光电技术学院与海外合作者在共轭高分子合成研究方面取得进展
2024/04/01
![]() |
图 共轭高分子合成方法。(a)之前工作的关键问题;(b)新合成策略的优势
在国家自然科学基金项目(批准号:51925306、52222309、52173187)等资助下,中国科学院大学材料科学与光电技术学院黄辉教授、史钦钦副教授和美国西北大学Tobin J. Marks教授团队合作,解决了Suzuki−Miyaura交叉偶联聚合反应长达半个世纪的难题,为大规模合成共轭高分子半导体材料提供了绿色、高效、精准的新策略,有望促进有机电子学的产业化。相关成果以“面向有机电子学的普适、室温的Suzuki–Miyaura聚合方法(General room-temperature Suzuki–Miyaura polymerization for organic electronics)”为题,于2024年1月29日在线发表于《自然•材料》(Nature Materials)杂志。论文链接:https://www.nature.com/articles/s41563-023-01794-9。
导电高分子的出现打破了人们的传统知识范畴,被授予了2000年诺贝尔化学奖。基于导电高分子发展起来的共轭高分子半导体材料具有性能易调控、可溶液加工、柔性可折叠等优点,是有机电子技术的最理想材料。然而,由于现有合成方法与手段的局限性,目前宏量合成的共轭高分子存在结构缺陷多、批次重复性差等缺点,阻碍了高分子半导体材料的大规模商业化应用,因此开发高分子半导体材料的宏量精准合成新方法将有望为共轭高分子的大规模应用铺平道路,促进有机电子技术的发展。
Suzuki−Miyaura交叉偶联反应由Suzuki在上世纪70年代首先报道,由于该反应具有无毒、活性高等优点,已经广泛应用于碳−碳键的构建,因此被授予2010年诺贝尔化学奖。然而该反应仍然存在以下问题:(1)硼化物易于质子化脱硼,导致底物普适性低,主要适用于苯基硼化底物,而对于应用广泛的芳香杂环硼化底物却往往受限;(2)普遍采用有机溶剂/水的非均相反应体系,限制了其放大生产应用。因此,虽然该方法优势突出,但是难以应用于共轭高分子的精准、宏量合成。为了解决上述问题,科学家们在相关领域已经取得了许多进展;然而半个世纪已经过去,目前还未能完全解决上述问题,并将其应用于共轭高分子半导体材料的精准、宏量合成中。
该研究通过催化体系的创新,完全抑制了杂芳基硼酸酯的原位脱硼,同时实现了公斤级的宏量聚合,解决了Suzuki-Miyaura交叉偶联聚合反应长达半个世纪的难题。更重要的是该方法基本消除了高分子的自偶联结构缺陷与批次差异性,实现了共轭高分子的绿色精准合成。基于该方法合成的共轭高分子材料,由于结构缺陷的显著减少甚至消除,其结晶性和载流子迁移率都显著提高,从而大幅度提升了聚合物场效应管和太阳能电池的性能,有望推动共轭高分子的商业化应用。
文章来源国家自然科学基金委员会,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。
-
好学术:科研网址导航|学术头条分60
-
《时代技术》投稿全攻略:一位审稿71
-
2025年国际期刊预警名单发布!188
-
2025年中科院期刊分区表重磅发1406
-
中科院已正式发布2024年预警期410
-
2025年度国家自然科学基金项目338
-
中国科协《重要学术会议目录(201248
-
2024年国家自然科学基金项目评725
-
2024年JCR影响因子正式发布706
-
吉林大学校长张希:学术会议中的提921
-
【院校速递】今日院校科研十大要闻04-30
-
学生党焦虑:With Edito04-30
-
投稿前如何避免争议?- 三步走策04-30
-
投稿系统遭遇技术瓶颈?解析Wit04-30
-
小修=录取通知书?警惕学术期刊的04-30
-
BIT Congress, In 1872
-
上海华宏MBA培训中心 17841
-
山东财经大学 1777
-
武汉海讯科技会务有限公司 17860
-
长安大学数字油田研究所 23765
-
国际工学技术出版协会 1868
-
梵净山红豆杉开发有限公司 17799
-
江西省南昌市洪都中学 17908
-
中国塑协降解专委会 20849
-
张家界运通会务会展有限公司 17853
-
北京鸿腾瑞达广告 1805
-
深圳鸿丰大酒店 17757
-
厦门狄克电子科技有限公司 1796
-
九江中博实业发展有限公司 22752
-
中国图书馆学会 20855
-
黑龙江今水公司 17780
-
VFEAVW 7752
-
FEWFEW 7875
-
上海英致商务咨询有限公司 1788
-
光环国际管理咨询集团 22768