北京大学新材料学院郑家新课题组利用可解释机器学习助力探究掺杂对富镍层状正极中锂镍反位的影响
2024/03/21
近年来,富镍层状正极材料因其高能量密度和低成本备受关注。然而,锂镍反位缺陷在材料合成和循环工作的过程中会不可避免地出现,对锂离子电池性能有着重要影响。前人的大量研究工作通过引入掺杂元素来调节锂镍反位缺陷的程度,但由于实验方法和材料体系的复杂多样,即使对于相同的掺杂元素也会得出相反的结论,因此在一致条件下系统探究掺杂元素对锂镍反位缺陷的影响具有重要意义。然而,掺杂对体系的影响因素十分复杂,难以直接分析,适用于探索复杂高维信息机器学习算法是解决这一问题的有力工具。
期刊封面
近日,北京大学郑家新课题组在Journal of Physical Chemistry Letters期刊上发表题为“Interpretable Machine Learning to Accelerate the Analysis of Doping Effect on Li/Ni exchange in Ni-rich Layered Oxide Cathodes”的封面论文(DOI:10.1021/acs.jpclett.3c03294)。该研究基于第一性原理计算,得到高镍层状正极材料LiNi0.8Mn0.1X0.1O2中不同掺杂元素X下的锂镍反位缺陷形成能,采用结合随机森林(RF)模型和SHAP分析的可解释机器学习方法,以加速确定掺杂引入的复杂变量中影响锂镍范围缺陷的关键因素。
掺杂对富镍层状正极中锂镍反位的影响
该工作发现,在电子结构的方面,掺杂元素的价态可以显著改变镍的价态以及体系超交换相互作用的强度,从而来调节锂镍反位缺陷产生的难易,同时提出了可供评估超交换相互作用强度的两个指标COOPSU-SD(反位局部构型中晶体轨道重叠布居积分自旋向上与向下的差值)和Mago(反位局部构型中氧的磁矩)。另一方面,缺陷形成带来的晶体结构变化也影响着锂镍反位缺陷的形成难易,剧烈的体积变化使得锂镍反位缺陷更难形成。
该工作还提出了结合SHAP分析的可解释RF模型的方法,使用该方法时需要提供尽可能多与特定系统相关的具有物理意义的特征,并通过线性分析在模型中移除线性相关的冗余特征,来获得更好的拟合效果和可解释性。这一方法有助于更快速地分析掺杂对材料性能的影响,突破了传统实验和理论分析方法的限制,为材料的优化和研究提供了新的思路。
北京大学博士生贾怡宁和硕士生张瑞琪为论文共同第一作者,北京大学深圳研究生院郑家新副教授为该论文的通讯作者。该研究得到了国家自然科学基金和深圳市科技研究基金的支持。
文章来源北京大学新闻网,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。
-
好学术:科研网址导航|学术头条分247
-
《时代技术》投稿全攻略:一位审稿265
-
2025年国际期刊预警名单发布!387
-
2025年中科院期刊分区表重磅发3219
-
中科院已正式发布2024年预警期622
-
2025年度国家自然科学基金项目543
-
中国科协《重要学术会议目录(201810
-
2024年国家自然科学基金项目评917
-
2024年JCR影响因子正式发布907
-
吉林大学校长张希:学术会议中的提1113
-
北京大学人工智能研究院朱毅鑫课题06-17
-
高虾青素棉花新种质创制06-17
-
清华大学化工系徐军课题组合作在高06-17
-
现代化工投稿全解析:如何提升学术06-17
-
Ceramics Interna06-17
-
高分子物理与化学国家重点实验室 21029
-
VFEAVW 1810
-
北京爱德迈德广告有限公司 7991
-
中国化 学会 21072
-
中国社会发展研究院会议中心 18048
-
北京会通文化交流中心 18071
-
上海大学 22929
-
apise 22930
-
第十三届"分布式计算及其应用"国 23890
-
西南石油大学 2089
-
长春工业大学 18088
-
中科院自动化所 17918
-
北京泛玟商贸有限责任公司 20941
-
西北工业大学 1990
-
内蒙古工业大学 2091
-
中华两岸经文化贸繁荣促进会北京办 17895
-
山西太原师范学院 17884
-
上海后世博研究中心民营企业发展推 20964
-
清华大学持久性有机污染物研究中心 21148
-
北京星火包装机械有限公司 22923