“可解释、可通用的下一代人工智能方法”重大研究计划系列成果五 ——基于流的图神经网络与生物医学网络的新兴药物相互作用预测
2024/03/26
![]() |
图 EmerGNN框架的概述
在国家自然科学基金项目(批准号:92270106)等资助下,清华大学姚权铭助理教授带领课题组在医药领域首次提出了有效的深度学习方法来解决新药物间反应预测问题。相关研究成果以“基于流的图神经网络与生物医学网络的新兴药物相互作用预测(Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural Network with Biomedical Network)”为题,于2023年12月发表于《自然•计算科学》(Nature Computational Science)。论文链接:https://www.nature.com/articles/s43588-023-00558-4。
目前大约有6.7%的住院患者面临药物副反应的困扰,大约有0.32%的住院患者面临药物副反应带来的生命危险。而由于体内试验周期长,新药物极为缺乏参考用例,药物的不良反应在新药物上的问题更为严重,临床上的联合药物使用更易引发意外的不良反应。因此,开发高效的预测新药物间反应的方法非常必要。现有的深度学习方法需要大量的监督数据,且在预测方面表现不佳,如何解决监督数据缺失是核心问题。
针对这一难题,研究团队采用了小样本学习的办法,在原始药物反应图谱的基础上引入医药网络,利用其中丰富的医药学信息,组成新的医药图谱,从而解决了监督数据缺失的问题。进一步,研究团队从全图中将药物之间的关系路径提取成子图,并为路径设置注意力权重,基于注意力机制建立基于流的图神经网络EmerGNN,实现新药物之间反应的准确预测。在公共数据集上的大量实验表明,研究团队提出的EmerGNN性能不仅大幅超出基线方法,而且可以为重要关系路径提供解释性。
该研究率先为新药物间反应的预测提供了一种有效的算法和工具,提升了算法预测的可解释性和准确性,算法可迁移到蛋白质-蛋白质相互作用预测等应用上,有望在实际临床试验中应用,对于改善病人护理和加快药物开发过程有重要意义。
文章来源国家自然科学基金委员会,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。
-
好学术:科研网址导航|学术头条分60
-
《时代技术》投稿全攻略:一位审稿71
-
2025年国际期刊预警名单发布!188
-
2025年中科院期刊分区表重磅发1406
-
中科院已正式发布2024年预警期410
-
2025年度国家自然科学基金项目338
-
中国科协《重要学术会议目录(201248
-
2024年国家自然科学基金项目评725
-
2024年JCR影响因子正式发布706
-
吉林大学校长张希:学术会议中的提921
-
【院校速递】今日院校科研十大要闻04-30
-
学生党焦虑:With Edito04-30
-
投稿前如何避免争议?- 三步走策04-30
-
投稿系统遭遇技术瓶颈?解析Wit04-30
-
小修=录取通知书?警惕学术期刊的04-30
-
东南亚研究 22816
-
多格公关顾问 17927
-
博锐国际展览有限公司市场部 7823
-
上海市粘接技术协会 21047
-
黄山梅地亚酒店 17829
-
南昌工程学院 17828
-
新疆大学(211) 17952
-
FEWFR 23847
-
上海顺展展览服务有限公司 7819
-
qs 23787
-
中国科学院深圳先进技术研究院 20778
-
test0730 17806
-
国际科学与工程发展协会 22872
-
中国数字医疗网 23865
-
闪耀科技(深圳)有限公司 17847
-
BZEdu学术 7768
-
湖南诗和远方出版文化传媒有限公司 1807
-
湖北武汉古凡网络科技 23857
-
北京海名汇博会展有限公司 17813
-
广西先进文化发展促进会 22872