当前位置:首页 >> 学术资讯 >> 科研信息

清华大学 深圳国际研究生院刘碧录团队解决大电流密度制氢下的三大难题

2024/04/18

 氢能作为一种具有能量密度高的可再生清洁能源,对于碳中和目标的实现具有重大意义。电解水是一种绿色制氢的重要技术,然而,目前工业电解水制氢技术仍然面临三大关键挑战。首先,目前商用的催化剂仍以Pt,Ir,Ru等贵金属为主,成本高且储量低。其次,工业电解水制氢应用要求安培级的大电流密度。随着电流密度的提高,能耗与催化剂载量将随之上升,导致制氢成本上升。第三,催化剂在安培级大电流密度下将面临严峻的稳定性问题,尤其是催化剂脱落的问题。当催化剂与气泡之间的界面粘附力大于催化剂与基底之间的界面结合力时,可能造成催化剂从基底上剥落,从而导致催化性能的衰减。因此,构建在安培级电流密度下具有长期稳定性的催化电极对于面向工业应用的电解水制氢技术至关重要。

近日,清华大学深圳国际研究生院刘碧录团队创制出一种基于双界面设计的同源金属电极。该电极以优化催化剂与基底以及催化剂与气泡的双界面为出发点,解决了大电流密度制氢下的传质、界面力学、界面电导三大难题。这种同源金属催化剂通过MoS2和Cu的原位高温反应制备,将半导体相MoS2转成具有金属性质的Chevrel相CuMo6S8,这种一体化结构有效消除了半导体-金属接触的界面肖特基势垒。由于电极表面催化剂与基底具有强的化学键结合,且电极展现出全金属性质以及超亲水状态,因此有效提升了催化剂/基底界面结合力并降低了催化剂/气泡界面粘附力,在增强电极稳定性的同时加速了析氢反应的动力学,展现出优异的电催化析氢性能。该电极在2.5 A cm-2下仅需321mV的过电位,在1 A-2.5 A cm-2级别的大电流密度下稳定运行300小时性能无衰减。此外,前驱体MoS2可取自天然矿石辉钼矿,成本比贵金属铂降低2-5个数量级,与目前的大电流密度催化剂相比具有更大的成本优势。

图1.Cu-CuMo6S8电极制备及结构表征

图2.大电流密度下Cu-CuMo6S8电极的析氢性能

研究人员引入了原位全反射成像技术来观测电极表面活性的变化情况。此技术基于电极与三棱镜界面处氢气微纳气泡对反射光强的影响,利用全反射状态下光强突变所对应的起始电位表示催化剂的活性,而反应前后二者的起始电位差值就能体现出催化剂活性的变化情况。该技术不仅能够将电化学与光学手段结合,准确地实现电极表面活性成像,同时有望在未来实现电极活性的高通量筛选。

图3.原位全内反射成像法表征电极稳定性

微米划痕测试结果表明,同源金属电极的界面结合力相比于传统粘结剂负载的Pt/C电极提高了2倍,证实了催化剂与基底界面的结合力强。由于同源金属电极表现出金属性质和高表面粗糙度,其展现出Wenzel state的超亲水和超疏气特性。原位气泡观察发现电极表面气泡的脱附速率提高6倍,气泡粘附力减小二分之一,从而证实了同源金属电极在传质方面的优越性。另一方面,研究人员通过密度泛函理论(DFT)计算发现,Cu-CuMo6S8具有金属性和高的催化活性。CuMo6S8的Mo 4d与S 3p轨道占据费米能级附近,展现出金属性质,有效提高了界面电导。

图4.双界面力学表征

图5.Cu-CuMo6S8的DFT计算结果

相关研究成果以“基于双界面工程的Chevrel相电极材料用于2500 mA cm-2的超稳定析氢反应”(Dual interfacial engineering of a Chevrel phase electrode material for stable hydrogen evolution at 2500 mA cm-2)为题发表于《自然·通讯》(Nature Communications上。

论文通讯作者为清华大学深圳国际研究生院刘碧录副教授,第一作者为清华大学深圳国际研究生院2019级博士生刘鹤鸣和中国科学院福建物质结构研究所解瑞宽博士,论文作者还包括清华大学深圳国际研究生院刘乐副研究员、余强敏博士,中国科学院福建物构所柴国良教授等。该研究得到国家自然科学基金委、科技部、广东省科技厅、深圳市科创委等部门的支持。


版权声明:
文章来源清华大学新闻,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。

相关学术资讯
近期会议

2025艺术、服装设计与纺织科学国际会议(FDTS 2025)(2025-07-26)

第八届声学、振动、噪声控制国际研讨会(CAVNC 2025)(2025-08-09)

2025年矿山工程、地质工程与环境工程国际会议(ICMEGEEE 2025)(2025-08-10)

标准化、信息化、智能化(AI)赋能科技成果评估转化与高价值专利布局高级研修班(8月青岛)(2025-08-13)

第六届清洁能源与电力工程国际学术会议(ICCEPE 2025)(2025-08-15)

2025年可信大数据与人工智能国际会议(ICTBAI2025)(2025-08-21)

2025年第三届智能制造与自动化前沿国际会议(CFIMA 2025)(2025-08-22)

第六届物联网、人工智能与机械自动化国际学术会议 (IoTAIMA 2025)(2025-08-22)

第五届测量控制与仪器仪表国际学术会议(MCAI 2025)(2025-08-22)

第十届工程机械与车辆工程新进展国际学术会议(ICACMVE 2025)(2025-08-22)

2025计算机技术、电气工程与自动控制国际会议(CTEEAC 2025)(2025-8-23)

2025年航天航空,动力学与机械控制国际会议(ICADMC 2025)(2025-9-11)

2025年艺术,心理学与语言文化国际会议(ICAPLC 2025)(2025-8-11)

2025年智能控制与自动化工程国际国际会议(ICICAE 2025)(2025-8-23)

2025应用化学、高分子材料与工业催化国际会议(ICAPMIC 2025)(2025-9-9)

2025年储能技术与能源科学国际会议(ICITBM 2025)(2025-9-20)

2025农业、生物学与畜牧业国际会议(ICABAH 2025)(2025-9-11)

2025年新能源技术与轨道交通国际会议(NETRT 2025)(2025-9-8)

2025年计算机网络安全,云计算与物联网国际会议(CNSCCIT 2025)(2025-9-6)

2025年云计算架构与网络安全国际会议(CCANS 2025)(2025-9-19)

小贴士:学术会议云是学术会议查询检索的第三方门户网站。它是会议组织发布会议信息、众多学术爱好者参加会议、找会议的双向交流平台。它可提供国内外学术会议信息预报、分类检索、在线报名、论文征集、资料发布以及了解学术资讯,查找会服机构等服务,支持PC、微信、APP,三媒联动。