当前位置:首页 >> 学术资讯 >> 科研信息

清华大学 物理系周树云及合作者首次在半导体材料黑磷中实现了脉冲激光诱导的弗洛凯瞬时能带调控

2024/04/16

 光与物质的相互作用不仅是探究低维量子材料微观物理机制的重要探测手段,而且超短、超强脉冲激光还可作为电子结构及物态的有效调控手段,实现平衡态所不具有的新物态、新效应。最近,清华大学物理系教授周树云和合作者首次在半导体材料黑磷中实现了脉冲激光诱导的弗洛凯瞬时能带调控,并发现其与黑磷的赝自旋具有独特的耦合作用及光学选择定则。

图1 半导体材料弗洛凯能带调控示意图

低维量子材料具有丰富的物理特性,当前的研究主要聚焦在这些材料的平衡态特性,而对其非平衡态物理及超快动力学的研究尚处于发展阶段。在超快时间尺度(皮秒甚至飞秒,10-15或10-12秒)上实现电子结构和物理特性的测量和调控,不仅能够拓展非平衡态物理知识的前沿,还将为未来新型、高速器件的开发和应用奠定重要的科学基础。在非平衡态超快动力学和瞬时物态调控研究中,一个备受关注的重要研究方向是通过周期振荡的势场诱导量子物态的变化,进而实现对其电子结构的调控,该方案被称为弗洛凯工程(Floquet engineering)。在晶体中,原子在实空间的周期性排列构成了晶体结构并进而导致了电子的能带结构在动量空间具有周期性;与之相类比,外加的周期振荡的势场也将导致电子在能量空间出现能带结构的周期性复制,进而形成弗洛凯态(如图1)。进一步地,通过电子与周期势场的相互作用对低维量子材料的能带结构、对称性及拓扑性质的瞬时调控,可实现平衡态所不具有的新物态,例如,将拓扑平庸的材料转变为拓扑材料,实现远离平衡态的拓扑超导态等。上述利用周期场驱动的量子物态调控机制被称为弗洛凯工程(Floquet engineering)。

弗洛凯调控的概念自上个世纪初被提出后就引起了物理学家的广泛关注,并被应用于凝聚态物理、冷原子物理和光晶格等领域。近十年来,弗洛凯瞬时能带和物性调控已经发展成为国际上凝聚态物理和材料科学的一个重要科学前沿。然而,尽管理论方面涌现出丰富的预言,与之形成鲜明对比的是凝聚态体系中的实验进展非常少。很多关键的科学问题,例如,能否在常规材料(例如,半导体)中实现能带结构的瞬时调控,仍然有待实验的证实。

图2 利用超快时间分辨角分辨光电子能谱在黑磷中实现弗洛凯瞬时能带调控

周树云研究组多年来致力于低维量子材料的电子能谱和非平衡态超快动力学的研究,尤其是弗洛凯能带及物态调控的实验研究。由于弗洛凯调控要求激发光源具有低光子能量、强峰值电场等极端实验条件,他们针对领域难点投入了大量的精力,攻克了中红外强场脉冲激发光源以及与角分辨光电子能谱仪结合方面的困难,研制出具有前沿技术指标的超快时间分辨角分辨光电子能谱(TrARPES)系统。在材料体系方面,他们巧妙地选取了黑磷这个具有小带隙、高迁移率的经典半导体材料。通过精细调节中红外激发光源的光子能量,他们发现当光子能量与带隙接近共振时,黑磷的电子结构从平衡态的抛物线形状演化为在带顶打开能隙的“墨西哥帽”形状(如图2中红色箭头所指),并观察到了复制的弗洛凯边带。在此基础上,他们通过系统性地探究该瞬时能隙对时间、光强和电子掺杂等变量的响应等,确认了所观测到的瞬时能隙是由弗洛凯能带工程所导致。

此外,周树云研究组发现黑磷中的弗洛凯能带工程对激发光源的偏振具有强烈的选择性:只有当泵浦光偏振沿着黑磷的扶手椅型(armchair)方向时,才会出现瞬时能隙,揭示出弗洛凯能带工程调控具有特定的光学选择定则。结合理论分析,他们指出这一奇特的偏振选择效应来源于黑磷的赝自旋自由度(黑磷元胞中含有两个子晶格,对应的两能级系统可类比自旋)。这些研究结果不仅为弗洛凯能带调控提供了重要的思路,同时也为进一步探索拓扑物态、关联物态(磁性、超导等)的瞬时调控奠定了重要的基础。

图3 参与项目研究的实验团队成员

该项研究工作以“黑磷的弗洛凯能带调控及赝自旋选择特性(Pseudospin-selectiveFloquetband engineering in black phosphorus)”为题发表在《自然》(Nature)期刊上同期刊发题为“光调控模型半导体性质”(“Light tailors the properties of a model semiconductor”评述文章对该工作的意义进行正面评价。

该论文的通讯作者是物理系周树云教授,论文共同第一作者为清华大学物理系2017级博士生周绍华和清华大学“水木学者”鲍昌华。合作者包括清华大学物理系段文晖院士、于浦教授,北京航空航天大学汤沛哲教授,中科院物理所孟胜研究员等。该研究工作主要受到科技部国家重点研发计划、自然科学基金委国家杰出青年科学基金项目、重点项目和重大科研仪器研制项目的支持。此外,该研究工作还受到国家自然科学基金委基础科学中心项目和中国科学院项目的支持。



版权声明:
文章来源清华大学新闻,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。

相关学术资讯
近期会议

2025年第四届人工智能与机器学习国际会议(FAIML 2025)(2025-04-25)

2025年无线与光通信国际会议(CWOC 2025)(2025-04-25)

2025年计算机科学与神经网络国际会议(ICCSNN 2025)(2025-05-10)

SPIE出版|2025年遥感与信息技术学术会议(RSIT2025)(2025-05-18)

2025年电子信息、计算机技术与通信工程国际会议(EICTCE 2025)(2025-05-22)

2025年计算机游戏、仿真与建模国际会议(2025-05-22)

第十届组合数学与图论国际研讨会(CGT 2025)(2025-05-23)

2025年第三届亚洲计算机视觉、图像处理和模式识别国际会议(CVIPPR 2025)(2025-05-23)

第四届机器视觉、自动识别与检测国际学术会议(MVAID 2025)(2025-05-23)

第九届能源技术与材料科学国际学术会议(ICETMS 2025)(2025-05-23)

2025年智能建筑与绿色材料国际会议(ICIBGM 2025)(2025-5-28)

2025数学、大数据与应用统计国际会议(ICMBDAS 2025)(2025-5-30)

2025年传感器与工业自动化国际会议(ICSIA 2025)(2025-6-8)

2025年智能建筑技术与工程结构融合国际会议(ICIIBTES 2025)(2025-5-22)

2025年大数据、区块链与智慧金融国际会议(ICBDBSF 2025)(2025-5-22)

2025年环境预防与资源科学国际会议(EPRS 2025)(2025-6-13)

2025企业管理、产业研究与财政学国际会议(EMIRF 2025)(2025-6-3)

2025年仿真、模型与自然语言处理国际会议(SMNLP 2025)(2025-5-8)

2025土木、水电工程与工程管理国际会议(HEEM 2025)(2025-5-13)

2025环保、水资源管理与地球科学国际会议(EPWRMES 2025)(2025-5-28)

小贴士:学术会议云是学术会议查询检索的第三方门户网站。它是会议组织发布会议信息、众多学术爱好者参加会议、找会议的双向交流平台。它可提供国内外学术会议信息预报、分类检索、在线报名、论文征集、资料发布以及了解学术资讯,查找会服机构等服务,支持PC、微信、APP,三媒联动。