我国学者在化学驱动微纳米马达研究方面取得进展
2025/06/03
![]() |
图1 化学驱动微纳马达的三类共性、基础问题
纳米技术发展的终极目标之一,是制造能够在微纳米尺度自主游动的机器人。这样的微纳米机器人有望为生物诊疗、环境监测、微纳制造等领域带来颠覆式的创新。微纳机器人的核心组件是能够将环境中储存的能量转化为动力的微马达,利用化学反应驱动的微马达能随时随地从环境中提取燃料,不需要外界供能,因此在复杂的环境中仍有其独特的优势。近二十年来,国内外研究人员对其开展了大量的实验、理论、模拟研究,但化学驱动微纳马达仍有许多基本的科学问题亟待厘清。
在国家自然科学基金项目(批准号:T2322006)等资助下,哈尔滨工业大学(深圳)大学王威团队研究在化学驱动微纳米马达研究领域取得进展。相关成果分别以“化学驱动微纳米马达的未解之谜(Open Questions of Chemically Powered Nano- and Micromotors)”和“化学驱动微马达在油水界面显著加速(Chemical Micromotors Move Faster at Oil–Water Interfaces)”为题,发表于《美国化学会会志》(Journal of the American Chemical Society)杂志。论文链接分别为: https://pubs.acs.org/doi/10.1021/jacs.3c09223和https://pubs.acs.org/doi/10.1021/jacs.3c13743。
该团队在观点文章中总结了化学驱动的微马达个体驱动机制、边界对马达运动的影响规律与机制、马达相互作用机制等三个方面的主要研究挑战(图1)。并指出了下一步研究需要更精细的实验测量和全面、细致模拟实验中所有效应的模型。
该团队研究揭示了化学驱动微马达在油水界面能够显著加速这一反常现象。相较于实验室常见的液固界面,化学驱动的微马达在油水界面能够加速3~6倍,在某些情况下甚至能加速10倍以上(图2)。马达加速的原因推测为油水界面处化学反应变快。此外,还可以利用马达的速度作为探针,监测界面处反应速率,从而提供一种原位、可视的测量复杂环境中化学反应速率的方法。
图2 化学驱动微马达在油水界面显著加速
以上工作充分展示了微马达丰富的研究内容与多学科交叉的研究特点,有力地推动了微纳马达在理论和应用两方面的发展,也为仿生材料、活性物质、微纳机器人等领域的发展提供了新的思路。
文章来源国家自然科学基金委员会,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。
-
2025最新JCR分区及影响因子1939
-
好学术:科研网址导航|学术头条分468
-
《时代技术》投稿全攻略:一位审稿499
-
2025年国际期刊预警名单发布!600
-
2025年中科院期刊分区表重磅发3957
-
中科院已正式发布2024年预警期861
-
2025年度国家自然科学基金项目727
-
中国科协《重要学术会议目录(202733
-
2024年国家自然科学基金项目评1138
-
2024年JCR影响因子正式发布1214
-
吉林大学校长张希:学术会议中的提1391
-
SCI论文插图全攻略:从规范解析08-01
-
国际学术会议参加经验是怎么样的呢08-01
-
掠夺性会议是怎么进行判断的呢?—08-01
-
SCI论文投稿费怎么交?202408-01
-
复旦大学历史系 17960
-
太阳圣华(北京)医疗科技有限公司 17968
-
中国化工企业管理协会 23952
-
武汉黄陂木兰湖度假酒店 1905
-
国际工学技术出版协会 2025
-
广州鑫亚展览有限公司 17882
-
九江金桥旅行社有限公司 18022
-
深圳市宇博展览策划有限公司 18057
-
江西南昌明月风光会展服务有限公司 17987
-
安徽中设明德会展有限公司 8177
-
北京慈孝文化传播中心 18048
-
武汉大学 18174
-
北京交通大学 23099
-
北京交通大学 2180
-
东南大学 23873
-
江苏省苏州大学 2136
-
山东省烟台大学 21198
-
对外经济贸易大学 1926
-
武汉csse主办方 1938
-
湖南诗和远方出版文化传媒有限公司 8070