当前位置:首页 >> 学术资讯 >> 科研信息
小贴士:学术会议云是学术会议查询检索的第三方门户网站。它是会议组织发布会议信息、众多学术爱好者参加会议、找会议的双向交流平台。它可提供国内外学术会议信息预报、分类检索、在线报名、论文征集、资料发布以及了解学术资讯,查找会服机构等服务,支持PC、微信、APP,三媒联动。
综合推荐区

【JPCS出版,往届均已见刊检索,最快会后4个月EI检索】第三届智慧能源与能源物联网国际学术会议(SEEIoT 2024)

【JPCS出版,EI和Scopus双检索】第八届能源技术与材料科学国际学术会议(ICETMS 2024)

【河南大学主办 | 已有ISSN号丨SPIE独立出版丨录用率高丨检索快】第四届生物医学与生物信息工程国际学术会议(ICBBE 2024)

【四川省人工智能学会、中国民用航空飞行学院联合主办 | ACM出版 | EI(核心),Scopus检索】第四届大数据、人工智能与风险管理国际学术会议  (ICBAR 2024)

【2024算力大会分会 | 前两届已完成EI检索!】2024云计算、性能计算与深度学习国际学术会议(CCPCDL 2024)

【IEEE独立出版,院士报告,高校背书,快至3天录用】第五届信息科学与并行、分布式处理国际学术会议(ISPDS 2024)

【提交ACM-ICPS出版, EI&Scopus检索稳定 | 同步提交知网,最快见刊后一个月内知网检索】第三届信息经济、数据建模与云计算国际学术会议 (ICIDC 2024)

【JPCS独立出版 (ISSN:1742-6596),往届已见刊并完成EI以及Scopus检索】第八届水动力学与能源电力系统国际学术会议(HEEPS 2024)

【ACM稳定EI检索 | 会议收录率高 | 有ISSN号】2024年智慧教育与计算机技术国际学术会议(IECT 2024)

2024年第三届网络、通信与信息技术国际会议(CNCIT 2024)

【 高录用,快速见刊 | 往届均已见刊检索】第八届可再生能源与发展国际研讨会(IWRED 2024)

【CPCI,CNKI,Google scholar】第三届经济、智慧金融与当代贸易国际学术会议(ESFCT 2024)

【JPCS出版,华中科技大学协办 | EI (核心),Scopus检索】2024年机器人前沿技术与创新国际会议(FTIR 2024)

【EI Compendex, Scopus检索】2024年图像处理、智能控制与计算机工程国际学术会议(IPICE 2024)

2024年亚太计算技术、通信与网络国际会议(CTCNet 2024)

【IEEE精品会议,已确定ISBN号,见刊检索有保障!】第七届机电一体化与计算机技术工程国际学术会议(MCTE 2024)

2024年IEEE第五届控制,机器人与智能系统国际会议(CCRIS 2024)

【中南大学主办 | EI (核心) , Scopus检索】2024年智能驾驶与智慧交通国际学术会议(IDST 2024)

2024年第三届算法、数据挖掘和信息技术国际会议(ADMIT 2024)

2024年第七届机器学习和自然语言处理国际会议(MLNLP 2024)

2024年IEEE亚洲先进电气与电力工程会议(ACEPE 2024)

2024年第七届数据科学与信息技术国际会议(DSIT 2024)

会议展示区

【医工结合,高科技行业盛会,行业大咖,院士汇聚,ACM出版】2024年智能医疗与可穿戴智能设备国际学术会议(SHWID 2024)

【高录用、快检索】【SPIE 独立出版 | ISSN: 0277-786X】第三届信号处理与通信安全国际学术会议(ICSPCS 2024)

【河南省科学院和河南大学联合主办 | SPIE出版 (ISSN: 0277-786X),往届已被EI收录检索】第二届遥感、测绘与地理信息系统国际学术会议(RSMG 2024)

【浙江工业大学主办,往届均已成功被EI、Scopus检索! EI检索稳定、快速】第五届物联网、人工智能与机械自动化国际学术会议 (IoTAIMA 2024)

【IEEE独立出版,院士报告,高校背书,快至3天录用!】第五届信息科学与并行、分布式处理国际学术会议(ISPDS 2024)

2024年教育创新国际论坛(IEFI 2024)

第七届模式识别与人工智能国际会议 (PRAI 2024)

陈鹏/樊新元团队与合作者开发生物正交“色氨酸脱笼”技术助力上万潜在蛋白的特异激活

2024/03/20

因其独特的结构,色氨酸是蛋白质中介导分子相互作用类型最多、也最“昂贵”的天然氨基酸,其生物合成的“成本”远超其他天然氨基酸,且只由UGG一个密码子编码。【1】由于色氨酸的独特性和稀缺性,色氨酸往往出现在蛋白质的关键位点,稳定蛋白质结构、调节蛋白质构象、调控蛋白质相互作用、参与分子识别和催化等重要过程。【2—3】如果能够在活细胞内精准操纵特定色氨酸的功能及相互作用,就有望获得一种特异激活含色氨酸蛋白质的通用技术。然而目前尚无对色氨酸进行“可逆化学编辑”的相关报道。

2024年2月28日,北京大学陈鹏/樊新元团队与浙江大学林世贤团队合作,在Nature Chemistry杂志在线发表了题为“Genetically encoded bioorthogonal tryptophan decaging in living cells”的研究论文。该研究开发了一种能在活细胞中“笼锁”和“脱笼解锁”蛋白质中任意色氨酸功能的通用方法(Trp-CAGE,图1)。该方法利用基因密码子扩展技术将“笼锁”色氨酸(Caged Tryptophan)引入目标蛋白的特定位点,实现其功能的暂时屏蔽;然后,利用新发展的生物正交剪切反应在活细胞中完成可控 “脱笼”,实现各类蛋白质家族的精准“激活”和功能解析。通过计算机模型预测,该“色氨酸脱笼”技术可对超过28,000个来自不同物种的候选蛋白质进行功能获得性研究。

论文截图

陈鹏课题组长期致力于发展适用于活细胞的生物正交反应,在国际上率先提出并发展了生物正交剪切反应【4】,即通过对目标蛋白关键残基的保护-脱保护,实现对其活性的原位“关-开”调控(即笼锁-脱笼,caging-decaging)。这种方法普适性广,对蛋白结构改动小,可以最大程度还原天然蛋白的活性。在前期的研究工作中,陈鹏课题组将生物正交剪切反应运用于多种氨基酸残基的脱笼,在活细胞中实现了不同种类酶活性的原位、瞬时激活【5—8】。“色氨酸脱笼”是其课题组在生物正交剪切反应领域的全新突破。

17a582b60d96457482dd3c12f0db9de4.jpg

图1. 色氨酸“笼锁-脱笼”(Trp-CAGE)策略的示意图

在研究中,研究人员首先设计了能掩蔽几乎所有色氨酸相互作用的非天然氨基酸,并发展了与之配套的生物正交剪切反应。研究人员在色氨酸的吲哚氮原子上引入一个额外的π系统(乙烯基),通过共轭效应削弱了吲哚环的π能量,从而同时阻断了色氨酸的极性相互作用、疏水相互作用和π相互作用(图2)。此外,研究人员还注意到乙烯基的HOMO轨道能量因共轭作用而上升,使其参与逆电子需求的狄尔斯-阿尔德反应(IEDDA)的活性增强。基于这一发现,研究人员开发了首个针对吲哚类结构的IEDDA-剪切反应。该反应可在PBS溶液中稳定进行,能够在30分钟内以大于80%的收率得到脱笼产物。

图2. 非天然氨基酸的设计及生物正交剪切反应的发展

接下来,研究人员采用了遗传密码子扩展策略以位点特异性的方式将“笼锁”色氨酸(N-乙烯基色氨酸,vyW)引入蛋白质中,并采用了“级联进化”的策略对嵌合体苯丙氨酸氨酰-tRNA合成酶(chPheRS)加以进化筛选【9】。首先,他们选择了一种与vyW化学结构相似且只相差一个碳原子的过渡化合物N-甲基色氨酸(1MW)。通过定向进化筛选,成功获得了能够识别1MW的突变体(1MWRS),并建立了1MW和vyW与这些突变体之间的对接模型。基于对接模型的不同,研究人员有针对性地对1MWRS进行了三个关键残基的突变,并最终成功鉴定出一种高效准确识别vyW的氨酰-tRNA合成酶(vyWRS)(图3)。随后,研究者们利用模型蛋白质在体外以及活细胞中评估了脱笼反应的效率。实验结果显示,对于体外纯化的模型蛋白质-GFP上的vyW,其脱笼效率可超过>90%,而在活细胞中,使用Renilla Luciferase (RLuc)报告系统评估的脱笼效率达到了54%。

图3. 氨酰-tRNA的进化及Trp-CAGE在体外及活细胞中的验证

在此基础上,研究人员建立了蛋白质激活的通用平台。通过在PDB数据库中使用新建的算法来搜索含有关键色氨酸的蛋白质,发现超过28,000个蛋白质的色氨酸-配体距离在5Å以内。这表明这些蛋白质可以通过色氨酸脱笼技术进行功能研究。色氨酸残基在蛋白质中的化学相互作用可以归类为五种主要类型,包括氢键作用、疏水相互作用、金属结合、π-π堆积和阳离子-π相互作用。研究人员针对每种相互作用挑选了示例蛋白,并成功使用Trp-CAGE策略“沉默”和“恢复”了相应的蛋白质功能。Trp-CAGE策略的应用范围广泛,可以精确调控多种蛋白质的生理过程,包括别构作用、蛋白质成熟过程、酶活口袋调控,蛋白质-RNA相互作用以及蛋白质-蛋白质相互作用等。该策略适用于各种蛋白质家族,包括荧光蛋白(用于生物标记和显微镜研究)、金属结合蛋白(参与金属离子的配位和催化反应)、激酶(调控信号传导通路)、荧光素酶(用于生物发光实验)、翻译起始因子(调节蛋白质合成)和翻译后修饰读取蛋白(参与蛋白质修饰)等。通过Trp-CAGE策略,这些蛋白质的功能可以被精准的调控和研究(图4)。

图4. 基于Trp-CAGE策略的通用型蛋白质激活平台

研究人员进一步关注了利用Trp-CAGE来调控表观遗传“阅读器”蛋白与组蛋白的相互作用。从PDB数据挖掘中,研究人员分别确定了27个、134个和133个含有赖氨酸单甲基化、双甲基化和三甲基化的识别结构域中含有关键的色氨酸。这些结构域可以识别组蛋白H3上K4、K9、K27和K36位点的赖氨酸甲基化【10】研究证实,Trp-CAGE策略可以在体外以及活细胞中调控所有选定的阅读结构域(包括PHD、Chromo、BAH和Tudor结构域)与组蛋白H3上的四个甲基化赖氨酸位点(K4、K9、K27和K36)之间的相互作用(图5)。

图5. 在活细胞中调控表观遗传读码蛋白

综上,该工作发展了一种独特且通用的色氨酸脱笼方法,用于“化学”激活蛋白质特定位点上的色氨酸,以实现相应蛋白质的功能获得性研究。该研究以共轭化学作为设计思路,使用乙烯基作为保护基团,通过共轭吲哚的π系统成功地阻断了色氨酸的几乎所有相互作用类型。这种独特的保护基团可以通过生物正交剪切反应迅速脱除,实现对活细胞内蛋白质的实时、原位激活。更令人兴奋的是,该策略具有广泛的适用性,可以操纵各种不同类型的蛋白质,包括荧光蛋白、金属结合蛋白、激酶、荧光素酶、翻译起始因子和组蛋白翻译后修饰阅读蛋白等。根据计算预测,该策略可以在超过28,000个候选蛋白质上进行生物正交激活调控,展示了其巨大的应用潜力。这一突破为探索和理解蛋白质功能提供了全新的工具。

北京大学陈鹏/樊新元课题组博士后朱玉超、浙江大学林世贤课题组博士后丁文龙为论文的共同第一作者,陈鹏教授、林世贤研究员和樊新元副研究员为论文的共同通讯作者。该研究获得了国家重点研发计划、国家自然科学基金、北京市自然科学基金、北京分子科学国家研究中心、新基石研究员计划、生物医学峰基金以及博士后创新人才支持计划的资助。

参考文献:

1. Barik, S. The Uniqueness of Tryptophan in Biology: Properties, Metabolism, Interactions and Localization in Proteins. Int. J. Mol. Sci.21, 8776, (2020).

2. Cuello, L. G. et al. Structural basis for the coupling between activation and inactivation gates in K+ channels. Nature 466, 272—275, (2010).

3. Xue, Y. et al. Cu(I) recognition via cation-π and methionine interactions in CusF. Nat. Chem. Biol.4, 107—109, (2007).

4. Li, J. & Chen, P. R. Development and application of bond cleavage reactions in bioorthogonal chemistry. Nat. Chem. Biol. 12, 129—137, (2016)

5. Wang, J., Wang, X., Fan, X. & Chen, P. R. Unleashing the Power of Bond Cleavage Chemistry

in Living Systems. ACS. Cent. Sci. 7, 929—943, (2021).

6. Wang, J. et al. Time-resolved protein activation by proximal decaging in living systems. Nature 569, 509—513, (2019)

7. Li, J., Jia, S. & Chen, P. R. Diels-Alder reaction-triggered bioorthogonal protein decaging in living cells. Nat. Chem. Biol. 10, 1003—1005, (2014)

8. Li, J. et al. Palladium-triggered deprotection chemistry for protein activation in living cells. Nat. Chem. 6, 352—361, (2014).

9. Ding, W. et al. Chimeric design of pyrrolysyl-tRNA synthetase/tRNA pairs and canonical synthetase/tRNA pairs for genetic code expansion. Nat. Commun.11, 3154, (2020).

10. Zhao, H. et al. Manipulating Cation-π Interactions with Genetically Encoded Tryptophan Derivatives. J. Am. Chem. Soc.144, 6742—6748, (2022).


版权声明:
文章来源北京大学新闻网,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。

相关学术资讯
近期会议

第十一届先进制造技术与材料工程国际学术会议 (AMTME 2024)(2024-05-17)

第五届计算机通信与网络安全国际学术会议 (CCNS 2024)(2024-05-17)

2024年教育政策与实践研讨会(ICEPP 2024)(2024-05-24)

第九届机电控制技术与交通运输国际学术会议(ICECTT 2024)(2024-05-24)

第三届机电一体化与机械工程国际会议(ICMME2024)(2024-05-24)

2024年电子器件、传感控制技术与光学机械工程国际学术会议(EDSCTOE 2024)(2024-05-25)

第十四届地质和地球物理学国际会议(ICGG 2024)(2024-05-31)

2024年食品工程与农业科学国际会议(ICFEAS 2024)(2024-06-02)

2024年第三届网络、通信与信息技术国际会议(CNCIT 2024)(2024-06-07)

2024年先进机器人,自动化工程与机器学习国际会议(ARAEML 2024)(2024-06-28)

2024年大数据、财务管理与信息技术国际会议(ICBFMIT 2024)(2024-6-25)

2024年第五届计算机视觉与信息技术国际会议(CVIT 2024)(2024-8-16)

2024社会发展、心理健康与文化国际学术会议(ICSDMHC 2024)(2024-6-22)

2024年能源动力、控制工程与机器人技术国际学术会议(ICEPCER 2024)(2024-5-28)

2024年第12届交通与物流工程国际会议(ICTLE 2024)(2024-8-23)

2024年智能管理与信息技术国际会议 (ICIMIT 2024)(2024-5-15)

2024年工商管理、公共管理与社会发展国际学术会议(ICBAPASD 2024)(2024-5-30)

2024年第四届IEEE计算机通信与人工智能国际会议(CCAI 2024)(2024-5-24)

2024年哲学与社会科学国际会议(ICPSS 2024)(2024-6-26)

2024新材料与清洁能源国际会议(IACNMCE 2024)(2024-6-15)


第九届信息科学、计算机技术与交通运输国际学术会议(ISCTT 2024)
2024年粤港澳大湾区教育数字化与计算机科学国际学术会议(EDCS 2024)
第三届电气工程与自动控制国际学术会议(EEAC 2024)
2024年计算机视觉、机器人与自动化工程国际学术会议(CRAE 2024)
2024年土木工程结构与混凝土材料国际学术会议 (CESCM 2024)