当前位置:首页 >> 学术资讯 >> 科研信息

清华大学 深圳国际研究生院杨诚团队在高性能贴片式滤波电容器研究方面取得新进展

2024/04/16

 便携式电子产品和物联网的迅猛发展,加快了集成电路元件不断朝着小型化、薄型化和集成化方向发展的步伐。然而,作为一种关键的无源元件,滤波电容器(FCs)长期以来一直被所占空间最大的铝电解电容器(AECs)和钽电容器所主导,这对系统的小型化造成了巨大的挑战。尽管微型超级电容器已被寄予厚望,以取代容量更大的商用AECs和钽电容器,但它们仍受制于其缓慢的频率响应(<1Hz),因此无法平滑残留的交流纹波,无法满足新兴数字电路和便携式电子产品对高频滤波的应用需求。这就需要通过纳米技术开发具有更高性能的新型电极材料,以满足微型FCs对高电容的需求。纳米级过渡金属氮化物具有优异的导电性、化学稳定性高和本征高极性的优点,在电化学储能、能量转换和传感等领域有重要的应用潜力。然而,由于其超高的熔点,氮化物基纳米结构的可控制备仍然是一个复杂的挑战。因此,在纳米技术和电子元件技术领域,亟待以更可持续、可控和高效的方式开发新型的过渡金属氮化物纳米结构。

图1. 激光诱导瞬态自组织LITN的形成过程示意图及微观结构形貌

近日,清华大学深圳国际研究生院杨诚副教授团队提出了一种激光诱导瞬时自组织纳米结构的快速制造方法,并制备了一种直径在3-5nm左右的TiNx纳米丝混沌分形渗流网络(LITN)。通过调控激光加工的热力学和动力学条件,以及优化等离子体场、温度场、冲击波效应等多物理场作用,研究团队可以控制TiNx纳米丝的形态、组成和晶体取向。图1展现了LITN在不同时间尺度下可能的形成机制。它主要可以分为两个阶段:激光加热和瞬时冷却。整个LITN的形成过程涉及光子吸收、晶格振动、相变、等离子体形成和反应、凝结和自组织。在激光诱导冲击波和光热效应的瞬态过程中,等离子体状态的[Ti]和[N]相互反应,形成TiNx纳米团簇。随后,这些TiNx纳米团簇在多物理场环境中凝聚,表现出典型的自组织过程。如图2所示,LITN表现出纳米丝和介观尺度的孔隙结构。

图2. LITN样品的材料特征和原子尺度特征

LITN基表面贴装滤波电容器(SMFCs)电极阵列的制备与半导体制造和封装工艺完全兼容,可以满足嵌入式元件的严格规范,表现出简单、经济、高效和可持续的特点。LITN电极的三维介孔和良好的组织结构可以提供丰富的电荷传输通道,并沿垂直和平面方向的阻碍最小。如图3所示,LITN基SMFCs在水系电解质溶液中实现了超长的循环寿命(2,000,000次),120Hz时的面积能量密度为0.92μWhcm-2,体积能量密度为9.17mWhcm-3,这在水系电化学电容器中是创纪录的关键突破。

图3. 在Na2SO4电解质中LITN SMFCs的电化学性能

如图4所示,与商用AEC样品相比,LITN SMFC拥有几乎相同的快速响应能力。更关键的是,LITN SMFC还表现出优异的交流线滤波性能,在120Hz时纹波电压约为0.03 V,与商用AECs相当。结合半导体制造工艺技术,用激光直写技术制备的LITN SMFCs有望取代体积巨大的AECs,这将有利于新兴的可穿戴电子设备、移动电源、电器以及物联网上的分布式能量采集和供电的小型化,极大地促进高性能数字电路和新兴电子技术的发展。该方法不仅为创造新的低维过渡金属氮化物铺平了道路,而且还为开发高度集成的先进微器件提供了启示。

图4. 水系LITN SMFC的制备及其滤波性能

相关研究成果近日以“激光诱导瞬时自组织的TiNx纳米丝渗流网络结构用于高性能表面贴装滤波电容器”(Laser-induced Transient Self-organization of TiNxNano-filament Percolated Networks for High Performance Surface-mountable Filter Capacitors)为题发表在国际期刊《先进材料》(Advanced Materials)上。

本文通讯作者为清华大学深圳国际研究生院材料研究院杨诚副教授,第一作者为博士后王方成(现为中科院深圳先进院助理研究员),论文作者还包括清华大学深圳国际研究生院康飞宇教授、博士后郭镇斌(现为深圳大学助理教授)、2020级材料科学与工程专业博士生朱浩杰等。该研究得到国家自然科学基金委、深圳市科创委、深圳盖姆石墨烯中心等项目支持。


版权声明:
文章来源清华大学新闻,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。

相关学术资讯
近期会议

2025年第四届人工智能与机器学习国际会议(FAIML 2025)(2025-04-25)

2025年无线与光通信国际会议(CWOC 2025)(2025-04-25)

2025年计算机科学与神经网络国际会议(ICCSNN 2025)(2025-05-10)

SPIE出版|2025年遥感与信息技术学术会议(RSIT2025)(2025-05-18)

2025年电子信息、计算机技术与通信工程国际会议(EICTCE 2025)(2025-05-22)

2025年计算机游戏、仿真与建模国际会议(2025-05-22)

第十届组合数学与图论国际研讨会(CGT 2025)(2025-05-23)

2025年第三届亚洲计算机视觉、图像处理和模式识别国际会议(CVIPPR 2025)(2025-05-23)

第四届机器视觉、自动识别与检测国际学术会议(MVAID 2025)(2025-05-23)

第九届能源技术与材料科学国际学术会议(ICETMS 2025)(2025-05-23)

2025年美学、音乐与舞蹈学国际会议(ICAMDS 2025)(2025-6-10)

2025年环境变化与预防医学国际学术会议(ICECPM 2025)(2025-6-19)

2025年计算机信息科学与数据分析国际会议(CISDA 2025)(2025-5-29)

2025农业科学、纺织科学技术与食品科学技术国际会议(TSTFST 2025)(2025-6-7)

2025年石油化工、可再生能源与节能减排国际会议(ICRECE 2025)(2025-6-16)

第六届老龄化与老年医学国际学术会议(ICAG 2025)(2025-5-26)

2025年水利工程、水动力学与土木工程国际学术会议(HEHCE 2025)(2025-5-21)

2025年光学、电子技术与光通信国际会议(ICOETOC 2025)(2025-6-21)

2025年先进计算与软件工程国际会议(ICACSE 2025)(2025-5-25)

2025年应用力学、信息技术与地球物理国际学术会议(ICAMITG 2025)(2025-5-4)

小贴士:学术会议云是学术会议查询检索的第三方门户网站。它是会议组织发布会议信息、众多学术爱好者参加会议、找会议的双向交流平台。它可提供国内外学术会议信息预报、分类检索、在线报名、论文征集、资料发布以及了解学术资讯,查找会服机构等服务,支持PC、微信、APP,三媒联动。