当前位置:首页 >> 学术资讯 >> 科研信息
小贴士:学术会议云是学术会议查询检索的第三方门户网站。它是会议组织发布会议信息、众多学术爱好者参加会议、找会议的双向交流平台。它可提供国内外学术会议信息预报、分类检索、在线报名、论文征集、资料发布以及了解学术资讯,查找会服机构等服务,支持PC、微信、APP,三媒联动。
综合推荐区

【JPCS出版,EI和Scopus双检索】第八届能源技术与材料科学国际学术会议(ICETMS 2024)

【IEEE独立出版,院士报告,高校背书,快至3天录用】第五届信息科学与并行、分布式处理国际学术会议(ISPDS 2024)

2024年第三届网络、通信与信息技术国际会议(CNCIT 2024)

【 高录用,快速见刊 | 往届均已见刊检索】第八届可再生能源与发展国际研讨会(IWRED 2024)

【EI Compendex, Scopus检索】2024年图像处理、智能控制与计算机工程国际学术会议(IPICE 2024)

2024年亚太计算技术、通信与网络国际会议(CTCNet 2024)

【IEEE精品会议,已确定ISBN号,见刊检索有保障!】第七届机电一体化与计算机技术工程国际学术会议(MCTE 2024)

2024年IEEE第五届控制,机器人与智能系统国际会议(CCRIS 2024)

【中南大学主办 | EI (核心) , Scopus检索】2024年智能驾驶与智慧交通国际学术会议(IDST 2024)

2024年第三届算法、数据挖掘和信息技术国际会议(ADMIT 2024)

2024年第七届机器学习和自然语言处理国际会议(MLNLP 2024)

2024年IEEE亚洲先进电气与电力工程会议(ACEPE 2024)

2024年第七届数据科学与信息技术国际会议(DSIT 2024)

会议展示区

2024年教育创新国际论坛(IEFI 2024)

第七届模式识别与人工智能国际会议 (PRAI 2024)

化学学院黄富强课题组与合作者在《自然·能源》发表高压锂电正极最新研究进展

2024/04/11

新能源汽车和消费类电子器件的续航能力取决于电池的能量密度。随着消费者对续航要求的不断提高,高能量密度成为电池未来的发展方向,其关键在于开发高电压正极材料。然而,在高电压服役时,正极材料会面临晶体结构破坏(如晶格氧产出)、电解液分解导致的电池失效和燃爆等安全问题。以钴酸锂正极为例,其初始应用上限电压仅为4.2 V,若电压提升至4.6 V,体积能量密度将从2300 Wh/L提升至3700 Wh/L,增幅近60%,但也伴随着严重的结构退化。通过热力学计算表明,在电压高于4.1 V时,钴酸锂正极材料中的氧分压将会大于1atm,发生氧气的释放,即固相的氧产出(OER)反应,造成晶体结构的破坏。针对该问题,已有众多研究人员采用了如体相掺杂、表面包覆等改性手段,但效果并不显著,且难以同时应用于所有正极材料。

北京大学化学与分子工程学院黄富强教授与麻省理工学院李巨教授、清华大学材料学院董岩皓助理教授合作,于2023年1月12日在《自然·能源》Nature Energy)期刊发表题为“Stalling oxygen evolution in high-voltage cathodes by lanthurization”(《渗镧策略抑制高电压正极中的氧气析出》)的研究论文,提出了一种基于表面离子交换反应实现正极表面钝化的策略,名为“渗镧”,能够显著提高OER反应电位,改善电极的高电压稳定性。利用可控的液相离子交换工艺在正极材料表面引入了数纳米厚、均匀且晶格相干的应变钙钛矿重构层,该层具有高电子电导、高锂离子电导及低氧离子电导,显著提升了材料表面的OER反应过电位,且在高电压下可实现高价态氧在其氧空位中的可逆存储,从而显著提升了层状氧化物正极在高电压下的循环稳定性,可同时适用于钴酸锂正极、高镍三元正极及无钴富锂锰基正极。

“渗镧”工艺示意图及“渗镧”LiCoO2的微结构表征

该工作以钴酸锂正极为例来阐释所设计的改性策略,利用溶液中的La、Ca离子与材料表层晶格的锂离子进行离子交换反应,并辅以后续退火,在正极表面构筑出具有8%压缩应变的镧基钙钛矿-La、Ca梯度掺杂于Li层(区域II)-层状钴酸锂(区域III)的三层结构。得益于可控的液相反应,材料表面所形成的重构层具有高度的均匀性,这是一般的包覆方法所难以达到的。该策略与金属“渗碳”工艺异曲同工,因此在该工作中命名为“渗镧”(Lanthuriztion)处理工艺。该工艺可控性强、所构建的表面层均匀性好,可实现大规模制备。

通过“渗镧”工艺处理后的钴酸锂正极(La-LCO)具有十分优异的电化学性能。在半电池4.6 V下1 C循环500周后容量保持率为79.8%,而未改性材料在200周内容量快速降为0;高负载软包全电池中4.5 V下1 C循环500周保持率为84.4%,而同型号商业材料在300周内容量便降至50%以下;在5C高倍率下进行充放时,循环600周后仍能保持89.4%的容量,而未改性材料在100周内便衰减至0。该策略经优化后亦可适用于高镍三元正极和富锂锰基正极,高镍三元正极在改性后150周的容量保持率由80.0%提升至95.9%,富锂锰基正极循环150周的能量保持率也由80.2%提升至100%,材料的高压循环性能得到了显著提升,证明该策略具有优异的普适性。

“渗镧”LiCoO2正极的电化学性能及首次充电过程中的产气表征

文章通过原位差分电化学质谱、电子顺磁共振谱及软X射线吸收谱等表征手段证明渗镧工艺能显著提高OER过电位,抑制晶格氧产出,稳定充放电过程中过渡金属的价态变化。钙钛矿层中的弹性压应变显著提升了Co与O的d-p轨道杂化,提高了晶格氧的稳定性。微观尺度上的扫描透射电子显微镜与电子能量损失谱表征结果验证了富含氧空位的应变钙钛矿表面相能够充当高电压下的氧缓冲层,可逆地储存高电压下来自体相的活性氧,阻碍其从表面的析出。这样的表面相结构能够充分抑制高电压下的正极材料结构破坏及电解液分解等问题,大幅度提升了电池的高电压服役性能。

综上,该工作对高电压层状正极材料的产氧问题进行了系统阐释及分析,并提出了一种显著提高层状正极材料高电压稳定性的普适性策略。该策略具有如下特点:(1) 基于可控的液相离子交换反应,可实现高度的包覆均匀性;(2) 在材料表面引入具有压缩应变的纳米级钙钛矿涂层,其可作为氧缓冲器,利用氧空位可逆储存高电压下来自体相的活性氧,压缩应变的存在可显著增强过渡金属与氧之间的离子键作用,抑制活性氧向表面的迁移;(3) 具有良好的普适性,可适用于所有层状氧化物正极,且可实现大规模制备,为高电压三元高镍正极、富锂锰基正极的产业化提供了新的方案。

北京大学化学与分子工程学院博士生蔡明志,董岩皓为该论文共同第一作者,黄富强和李巨为通讯作者。该工作得到了国家自然科学基金委、上海市科学技术委员会和中国科学院前沿科学重点研究计划的经费支持。


版权声明:
文章来源北京大学新闻网,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。

相关学术资讯
近期会议

第九届机电控制技术与交通运输国际学术会议(ICECTT 2024)(2024-05-24)

2024年教育政策与实践研讨会(ICEPP 2024)(2024-05-24)

第三届机电一体化与机械工程国际会议(ICMME2024)(2024-05-24)

2024年电子器件、传感控制技术与光学机械工程国际学术会议(EDSCTOE 2024)(2024-05-25)

第十四届地质和地球物理学国际会议(ICGG 2024)(2024-05-31)

2024年食品工程与农业科学国际会议(ICFEAS 2024)(2024-06-02)

2024年第三届网络、通信与信息技术国际会议(CNCIT 2024)(2024-06-07)

2024年先进机器人,自动化工程与机器学习国际会议(ARAEML 2024)(2024-06-28)

2024年文化、艺术设计与社会科学国际学术会议(ICCADSS 2024)(2024-07-25)

第七届智能机器人与控制工程国际会议(IRCE 2024)(2024-08-07)

2024智能计算、信号处理与通信技术国际会议(ICSPCT 2024)(2024-5-30)

2024建模、计算机应用与数据科学国际会议(MCADS 2024)(2024-5-30)

2024应用心理学、人文发展与社会科学国际学术会议(APHDS 2024)(2024-6-23)

2024年第六届电气工程与控制技术国际会议(CEECT 2024)(2024-12-20)

2024年第九届电力与可再生能源国际会议(ICPRE 2024)(2024-9-20)

2024年第十届机械工程与自动化科学国际会议(ICMEAS 2024)(2024-10-18)

2024公共艺术、社会科学与文学国际学术会议(ICPASSL 2024)(2024-5-30)

2024年艺术设计、数字化技术与纺织工程国际学术会议(ADDTTE 2024)(2024-7-27)

第四届控制与智能机器人国际学术会议(ICCIR 2024)(2024-6-21)

2024传感器、机电一体化与信息技术国际会议(ICSMIT 2024)(2024-5-18)


第九届信息科学、计算机技术与交通运输国际学术会议(ISCTT 2024)
第五届机械工程与智能制造国际学术会议(MEIM 2024)
2024年计算机视觉、机器人与自动化工程国际学术会议(CRAE 2024)
2024年土木工程结构与混凝土材料国际学术会议 (CESCM 2024)