当前位置:首页 >> 学术资讯 >> 科研信息

北京大学材料科学与工程学院占肖卫课题组合作者在准同质结有机光伏研究中取得重要进展

2024/04/15

北京大学材料学院占肖卫课题组与合作者近日提出了准同质结(QHJ)有机太阳能电池的概念,发现了与传统本体异质结(BHJ)有机太阳能电池不同的工作机制,相关工作发表在《先进材料》上(Adv. Mater., https://doi.org/10.1002/adma.202206717)。

有机太阳能电池具有可印刷制备、质量轻、柔性、半透明等优点,是一种极具应用潜力的下一代光伏技术。近年来,得益于以ITIC和Y6为代表的稠环电子受体材料的发明,有机太阳能电池发展迅速。大多数有机半导体由于具有较小的介电常数(ε=3~4),其在光激发下产生具有高结合能而非自由电荷的Frenkel激子。激子解离依赖于给/受体界面提供的能级差,因而足够的给/受体界面是必不可少的。前期研究表明,给/受体相分离尺寸约为10~20nm的本体异质结有利于激子解离和电荷输运。因此,大多数高效有机太阳能电池的给体和受体含量大致相当。然而,BHJ结构的形貌敏感性可能导致加工复杂性和形貌不稳定,这些都限制了器件的性能和可重复性。

【新闻图】BHJ (a)和QHJ (b)有机太阳能电池基本工作机理.png

BHJ (a)和QHJ (b)有机太阳能电池基本工作机理

作者提出了QHJ有机太阳能电池的概念。有别于传统的BHJ太阳能电池,QHJ太阳能电池活性层由极少量(≤10 wt%)的给体与占绝大部分的受体材料组成。作者系统地研究了基于不同聚合物给体和稠环电子受体的QHJ有机太阳能电池。研究发现,基于PTB7-Th:Y6 的有机太阳能电池在给/受体质量比为1:8或1:20时,其效率分别是最优BHJ器件效率(给/受体比为1:1.2)的95%或64%。并且,这种QHJ太阳能电池形貌稳定性大大优于传统BHJ器件。有趣的是,当给体浓度降低时,基于其他给体或稠环电子受体的器件效率会急剧下降。基于超快瞬态吸收光谱、电流感应原子力显微镜和软X射线形貌表征等实验结果,作者揭示了QHJ太阳能电池的工作机理。在基于PTB7-Th:Y6的QHJ中,很大一部分自由电荷本质上是在纯Y6相中产生的,而不是在给受体界面。Y6还起到了双极性电荷输运通道的作用,除了传输电子,在极少给体的情况下还可实现高效的空穴输运。

QHJ结构有别于经典的BHJ结构,克服了BHJ的部分缺点。在QHJ中,可以通过提高本征电荷的产生和减少电荷复合来实现高效率,而不仅仅是依赖于给受体界面上的激子解离。

占肖卫课题组访问学者、青岛大学王逸凡是论文的第一作者,新西兰惠灵顿维多利亚大学Michael B. Price和占肖卫是共同通讯作者。合作者还包括东华大学唐正课题组、西安交通大学马伟课题组、美国雪城大学Quinn Qiao课题组、新西兰惠灵顿维多利亚大学Justin M. Hodgkiss课题组。

该工作得到国家自然科学基金委员会等的资助。

论文信息:

https://onlinelibrary.wiley.com/doi/10.1002/adma.202206717

Quasi-Homojunction Organic Nonfullerene Photovoltaics Featuring Fundamentals Distinct from Bulk Heterojunction

Yifan Wang, Michael B. Price,* Raja Sekhar Bobba, Heng Lu, Jingwei Xue, Yilin Wang, Mengyang Li, Aleksandra Ilina, Paul A. Hume, Boyu Jia, Tengfei Li, Yuchen Zhang, Nathaniel J.L.K. Davis, Zheng Tang, Wei Ma, Quinn Qiao, Justin M. Hodgkiss, Xiaowei Zhan*

Adv. Mater.https://doi.org/10.1002/adma.202206717


版权声明:
文章来源北京大学新闻网,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。

相关学术资讯
近期会议

2025艺术、服装设计与纺织科学国际会议(FDTS 2025)(2025-07-26)

第八届声学、振动、噪声控制国际研讨会(CAVNC 2025)(2025-08-09)

2025年矿山工程、地质工程与环境工程国际会议(ICMEGEEE 2025)(2025-08-10)

标准化、信息化、智能化(AI)赋能科技成果评估转化与高价值专利布局高级研修班(8月青岛)(2025-08-13)

第六届清洁能源与电力工程国际学术会议(ICCEPE 2025)(2025-08-15)

2025年可信大数据与人工智能国际会议(ICTBAI2025)(2025-08-21)

2025年第三届智能制造与自动化前沿国际会议(CFIMA 2025)(2025-08-22)

第六届物联网、人工智能与机械自动化国际学术会议 (IoTAIMA 2025)(2025-08-22)

第五届测量控制与仪器仪表国际学术会议(MCAI 2025)(2025-08-22)

第十届工程机械与车辆工程新进展国际学术会议(ICACMVE 2025)(2025-08-22)

2025年智慧交通、道路规划与城市建设国际会议(STRPUC 2025)(2025-8-15)

2025年智慧城市与人工智能国际会议(ICSCAI 2025)(2025-8-13)

2025年石油化工、工业催化与环境保护国际会议(ICPICEP 2025)(2025-8-5)

2025年图像算法、机器视觉与应用国际会议(IAMVA 2025)(2025-9-10)

2025年人工智能与信号处理国际会议(ICAISP 2025)(2025-8-16)

2025年智慧物流、供应链与无线通信国际学术会议(SLSCWC 2025)(2025-9-21)

2025年量子传感、信号处理与机器人装备国际会议(QSSPRE 2025)(2025-8-4)

2025年数字经济、区块链与网络安全国际会议(IDEBC 2025)(2025-8-14)

2025年并行、分布式处理与电子工程国际学术会议(PDPEE 2025)(2025-8-21)

2025年石油矿产、测量测绘与地质研究国际会议(IPMSGR 2025)(2025-8-30)

小贴士:学术会议云是学术会议查询检索的第三方门户网站。它是会议组织发布会议信息、众多学术爱好者参加会议、找会议的双向交流平台。它可提供国内外学术会议信息预报、分类检索、在线报名、论文征集、资料发布以及了解学术资讯,查找会服机构等服务,支持PC、微信、APP,三媒联动。