当前位置:首页 >> 学术资讯 >> 科研信息
小贴士:学术会议云是学术会议查询检索的第三方门户网站。它是会议组织发布会议信息、众多学术爱好者参加会议、找会议的双向交流平台。它可提供国内外学术会议信息预报、分类检索、在线报名、论文征集、资料发布以及了解学术资讯,查找会服机构等服务,支持PC、微信、APP,三媒联动。
综合推荐区

【JPCS出版,EI和Scopus双检索】第八届能源技术与材料科学国际学术会议(ICETMS 2024)

【IEEE独立出版,院士报告,高校背书,快至3天录用】第五届信息科学与并行、分布式处理国际学术会议(ISPDS 2024)

【 高录用,快速见刊 | 往届均已见刊检索】第八届可再生能源与发展国际研讨会(IWRED 2024)

2024年第三届网络、通信与信息技术国际会议(CNCIT 2024)

【河南大学主办 | 已有ISSN号丨SPIE独立出版丨录用率高丨检索快】第四届生物医学与生物信息工程国际学术会议(ICBBE 2024)

【提交ACM-ICPS出版, EI&Scopus检索稳定 | 同步提交知网,最快见刊后一个月内知网检索】第三届信息经济、数据建模与云计算国际学术会议 (ICIDC 2024)

【2024算力大会分会 | 前两届已完成EI检索!】2024云计算、性能计算与深度学习国际学术会议(CCPCDL 2024)

【JPCS出版,往届均已见刊检索,最快会后4个月EI检索】第三届智慧能源与能源物联网国际学术会议(SEEIoT 2024)

【四川省人工智能学会、中国民用航空飞行学院联合主办 | ACM出版 | EI(核心),Scopus检索】第四届大数据、人工智能与风险管理国际学术会议  (ICBAR 2024)

【ACM稳定EI检索 | 会议收录率高 | 有ISSN号】2024年智慧教育与计算机技术国际学术会议(IECT 2024)

【JPCS独立出版 (ISSN:1742-6596),往届已见刊并完成EI以及Scopus检索】第八届水动力学与能源电力系统国际学术会议(HEEPS 2024)

【CPCI,CNKI,Google scholar】第三届经济、智慧金融与当代贸易国际学术会议(ESFCT 2024)

【EI Compendex, Scopus检索】2024年图像处理、智能控制与计算机工程国际学术会议(IPICE 2024)

【JPCS出版,华中科技大学协办 | EI (核心),Scopus检索】2024年机器人前沿技术与创新国际会议(FTIR 2024)

2024年亚太计算技术、通信与网络国际会议(CTCNet 2024)

【IEEE精品会议,已确定ISBN号,见刊检索有保障!】第七届机电一体化与计算机技术工程国际学术会议(MCTE 2024)

2024年IEEE第五届控制,机器人与智能系统国际会议(CCRIS 2024)

【中南大学主办 | EI (核心) , Scopus检索】2024年智能驾驶与智慧交通国际学术会议(IDST 2024)

2024年第三届算法、数据挖掘和信息技术国际会议(ADMIT 2024)

2024年IEEE亚洲先进电气与电力工程会议(ACEPE 2024)

2024年第七届机器学习和自然语言处理国际会议(MLNLP 2024)

2024年第七届数据科学与信息技术国际会议(DSIT 2024)

会议展示区

【IEEE独立出版,院士报告,高校背书,快至3天录用!】第五届信息科学与并行、分布式处理国际学术会议(ISPDS 2024)

【高录用、快检索】【SPIE 独立出版 | ISSN: 0277-786X】第三届信号处理与通信安全国际学术会议(ICSPCS 2024)

2024年教育创新国际论坛(IEFI 2024)

【医工结合,高科技行业盛会,行业大咖,院士汇聚,ACM出版】2024年智能医疗与可穿戴智能设备国际学术会议(SHWID 2024)

【浙江工业大学主办,往届均已成功被EI、Scopus检索! EI检索稳定、快速】第五届物联网、人工智能与机械自动化国际学术会议 (IoTAIMA 2024)

【河南省科学院和河南大学联合主办 | SPIE出版 (ISSN: 0277-786X),往届已被EI收录检索】第二届遥感、测绘与地理信息系统国际学术会议(RSMG 2024)

第七届模式识别与人工智能国际会议 (PRAI 2024)

人工智能研究院朱毅鑫及合作者在“物理推理中的学习机制”研究取得进展

2024/04/15

近日,人工智能研究院朱毅鑫助理教授团队在NeruIPS发表论文“On the Learning Mechanisms in Physical Reasoning”,介绍了物理推理中两种学习机制的概念,即基于直觉的推理和基于动态轨迹的推理。

人类在解决生活中的物理难题时候有两种推理模式,第一种是基于直觉的推理,例如看到一摞堆叠的物体,能够直接通过直觉迅速判断出是否会倒,如图1,第二种是基于动态轨迹的推理,例如在多物体交互的游戏中通过想象各物体的运动轨迹来判断最终的游戏状态,如图2中的物理推理游戏[2]。

图1:判断堆叠的物体是否稳定[1]

图2:物理推理游戏,通过放置一个工具使得红球到达绿色区域

先前研究者普遍认为,解决这类复杂物理推理游戏需要基于动态轨迹预测,即首先训练一个动态轨迹预测模型去预测每一个时间节点各个物体的状态(位置,速度等),然后据此判断最终游戏的目标是否会被达到 [4, 5, 6]。

本文[8]质疑了原有的假设,并通过实验证明了智能体通过直觉也能解决复杂的物理难题,即只让智能体从初始场景中学习,然后直接给出最终任务成功或者失败的判断,而不需要从初始场景中预测未来物体可能的轨迹。本文在一个类似的物理推理数据集PHYRE[3]上做了实验,PHYRE提供了一系列在二维世界中的物理难题,每一个物理难题都有一个目标状态(如让绿色的球碰到紫色的物体)和一个初始状态,这些难题可以通过在环境中放置一个或多个新的物体被解决,模拟器会自动运行,来检验放置新物体的动作能否达到目标状态。除此之外,本文还通过实验论证了从动态轨迹中学习的潜在不足,并为未来物理推理的研究提供了具有前景的方向。本文共设计了如下四个实验逐步展开论证。

1.gif

图3:物理推理游戏PHYRE(来自https://phyre.ai/

实验一:对先前固有观念提出挑战

在第一个实验中,我们将从直觉中学习的模型和目前在PHYRE任务上表现最好的动态轨迹模型RPIN进行了比较,发现从直觉中学习的模型达到了和RPIN同样的表现,并且在从没见过的任务上表现超过了RPIN。这一现象有力的验证了从直觉中学习的巨大潜力,并对从轨迹中学习的固有观念提出了挑战。

实验二:理论上来讲,动态轨迹到底对物理难题的解决有没有帮助呢?

受到第一个实验的启发,本文设计了第二个实验来验证动态轨迹到底对于最终任务状态的判断是否有用。为了回答这个问题,本文从模拟器中直接抽取了各个物体的真实运动轨迹,据此让智能体判断能否达到最终的目标,实验结果发现,无论是在相似游戏场景测试(within)还是从未见过的游戏场景测试(cross)下,随着智能体输入轨迹帧数的增多(1,2,4,8),智能体解决物理游戏的表现都会变好(见图2),由此得出结论:如果提供准确的轨迹,动态预测会对物理难题的解决有帮助。

图4:智能体解决物理游戏的表现随输入轨迹帧数的变化

实验三:为什么实际应用中,动态轨迹对物理难题的解决没有帮助呢?

那么既然动态轨迹预测对于物理难题的解决确实有用,那为什么实际应用中,通过设计动态模型预测轨迹对于物理问题的解决没有积极作用呢?为了回答这个问题,本文设计了一种动态轨迹预测模型,通过严格的变量控制,来进行消融实验。具体地,对比了直觉模型(只有任务状态判断模块),串行动态预测模型(先训练动态预测模块,再训练任务状态判断模块)和并行动态预测模型(同时训练动态预测模块和任务状态判断模块)在相同训练设置下的表现,实验结果显示:

串行动态预测模型变现还不如直觉模型,因为动态预测模块很难获得像实验二中的精准轨迹,所以给后续的任务状态判断模块引入了噪声,反而对问题的解决带来了负面影响。

并行动态预测模型退化成了直觉模型,因为同时训练动态预测模块和任务状态判断模块可以让模型将更多注意力转移到最终任务状态的判断上,通过忽视动态预测模块预测出的轨迹来避免其引入的负面干扰。

通过这两点可以得出结论:实际设计的从轨迹中学习的模型因为不可避免地具有不准确性和噪声,所以反而干扰了最终任务状态的判断,表现近似或不如直觉模型。

图5:串行并行动态预测模型预测出的轨迹

实验四:更多的直觉模型

基于此,本文设计了第四个实验,尝试测试更多从直觉中学习的模型来进一步验证其有效性。实验结果发现,这些模型达到了或超过了从轨迹中学习的模型的表现(见表1),而且从直觉中学习的模型流程简单,也符合人类利用常识知识(AI中的暗物质[7])对游戏解的直觉性判断(如放置的红色小球应该在距离绿球相对近的地方并且能够对其施加某种影响,见图3),可谓一种有用且高效的方法。

图6:直觉模型对PHYRE游戏的解决方案

表1:从直觉中学习和从轨迹中学习模型的表现对比

在本文中,我们介绍了物理推理中两种学习机制的概念,即基于直觉的推理和基于动态轨迹的推理。虽然人们普遍认为对动态轨迹的预测有助于下游推理,但在实验一挑战了这一基本假设:简单的直觉模型有效地学习执行物理推理,而无需任何来自基本事实的额外监督动态轨迹信号。这一违反直觉的发现促使我们质疑动态轨迹的预测是否在物理推理中发挥重要作用。通过实验二,我们发现动态轨迹的预测可以提高解决问题的能力。通过实验三,我们进一步探讨了为什么动态轨迹预测模型在物理推理中表现不佳。我们注意到,嘈杂的动态预测对推理的整体性能产生负面影响;在并行动态预测模型中,动态轨迹预测模型退化成直觉模型。我们推测,从长远来看,动态预测的不确定性不可避免地累积,导致最终表现不佳。通过实验四,我们深入研究更多的直觉模型并检查其 PHYRE 中的性能。

图7:论文研究思路

为什么动态轨迹预测模型难以做出准确的预测?我们总结了以下可能的原因:

•动态轨迹预测本身具有挑战性,尤其是在全新的场景中。一方面,预测长阶段轨迹本质上是困难的,因为一些物体之间的交互,例如碰撞,难以预测。另一方面,错误将从早期累积,导致噪声指数级上升。不幸的是,当前的动态预测模型无法稳健地预测物理场景中的准确轨迹。

•基于像素的表示比基于物体的表示具有更多的信息,而基于物体的表示更简洁。可以说,基于像素的表示可能包含所有必要的信息,例如对象的形状、潜在的碰撞和角速度。然而,这样的表示非常嘈杂,并且很难提取有用信息。相比之下,基于物体的表示在设计上是简洁的,并且遵循物理定律的一般原则。然而,以物体为中心的方法在场景中失去了重要的线索,尤其是对于碰撞预测来讲。还没有一种特征表示方法可以总结物理建模的所有必要信息,这一事实进一步使物理推理复杂化。

未来研究展望:

•在实验中,我们使用了比较通用的直觉模型,没有针对物理推理任务的更多设计。我们认为,设计更能捕捉到物理场景空间信息的感知模块,将增强直觉模型的感知能力和泛化能力。

•虽然物理轨迹预测非常困难,但是它表现的上限能力具有前景。我们非常好奇,物理预测对于其他推理任务的作用,例如反事实推理以及假设推理。我们认为物理轨迹预测仍然需要更进一步的改进,我们期待在这个领域里的突破。

本文共同一作为李世乾(北京大学)、武可雯(清华大学),通讯作者张驰(北京通用人工智能研究院)、朱毅鑫(北京大学)。

参考文献

[1] Allen, Kelsey R., Kevin A. Smith, and Joshua B. Tenenbaum. "Rapid trial-and-error learning with simulation supports flexible tool use and physical reasoning." PNAS (2020)

[2] Battaglia, Peter W., Jessica B. Hamrick, and Joshua B. Tenenbaum. "Simulation as an engine of physical scene understanding." PNAS (2013)

[3] Bakhtin, Anton, et al. "Phyre: A new benchmark for physical reasoning." NeurIPS (2019)

[4] Qi, Haozhi et al. "Learning Long-term Visual Dynamics with Region Proposal Interaction Networks", ICLR (2021)

[5] Girdhar, Rohit, et al. "Forward prediction for physical reasoning." arXiv preprint arXiv:2006.10734 (2020)

[6] Harter A, Melnik A, Kumar G, Agarwal D, Garg A, Ritter H. Solving Physics Puzzles by Reasoning about Paths. arXiv:2011.07357 (2020)

[7] Yixin Zhu, Tao Gao, Lifeng Fan, Siyuan Huang, Mark Edmonds, Hangxin Liu, Feng Gao, Chi Zhang, Siyuan Qi, Ying Nian Wu, Joshua B. Tenenbaum, Song-Chun Zhu. "Dark, Beyond Deep: A Paradigm Shift to Cognitive AI with Humanlike Common Sense. " Engineering (2020)

[8] Shiqian Li, Kenwen Wu, Chi Zhang, Yixin Zhu. "On the Learning Mechanisms in Physical Reasoning." NeurIPS (2022)


版权声明:
文章来源北京大学新闻网,分享只为学术交流,如涉及侵权问题请联系我们,我们将及时修改或删除。

相关学术资讯
近期会议

第四届计算机图形学、图像与虚拟化研究国际会议(ICCGIV 2024)(2024-05-17)

第九届机电控制技术与交通运输国际学术会议(ICECTT 2024)(2024-05-24)

2024年教育政策与实践研讨会(ICEPP 2024)(2024-05-24)

第三届机电一体化与机械工程国际会议(ICMME2024)(2024-05-24)

2024年电子器件、传感控制技术与光学机械工程国际学术会议(EDSCTOE 2024)(2024-05-25)

第十四届地质和地球物理学国际会议(ICGG 2024)(2024-05-31)

2024年食品工程与农业科学国际会议(ICFEAS 2024)(2024-06-02)

2024年第三届网络、通信与信息技术国际会议(CNCIT 2024)(2024-06-07)

第十届机械工程、材料和自动化技术国际会议(MMEAT 2024)(2024-06-21)

2024年先进机器人,自动化工程与机器学习国际会议(ARAEML 2024)(2024-06-28)

2024年环境科学,资源与材料化学国际会议(ICESRMC2024)(2024-6-25)

2024年新能源技术与环境工程国际会议(ICNTEE 2024)(2024-6-24)

2024年第六届国际大数据工程大会(BDE 2024)(2024-7-24)

2024年第八届电子教育、电子商务和电子技术国际会议 (ICEBT 2024)(2024-9-24)

2024电子商务、互联网与数字经济国际会议(IACEIDE 2024)(2024-6-30)

2024年机械工程、材料科学和自动化国际会议(ICMEMSA 2024)(2024-5-23)

2024管理、经济发展与商务分析国际会议(ICMEDBA 2024)(2024-5-28)

2024文化传播与综合艺术国际学术研讨会(ISCCIA 2024)(2024-7-23)

2024电子通信与网络技术国际会议(ICECNT 2024)(2024-7-23)

2024年第四届会计、审计与金融国际会议 (ICAAF 2024)(2024-11-25)


2024年粤港澳大湾区教育数字化与计算机科学国际学术会议(EDCS 2024)
第五届机械工程与智能制造国际学术会议(MEIM 2024)
2024年计算机视觉、机器人与自动化工程国际学术会议(CRAE 2024)
第九届信息科学、计算机技术与交通运输国际学术会议(ISCTT 2024)
2024年土木工程结构与混凝土材料国际学术会议 (CESCM 2024)